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Introduction

I There are but a few analytic solutions of vacuum Yang–Mills
equation in Minkowski space, e.g. with SU(2) gauge group1.

I We improve this understanding here by working with non-compact
gauge group SO(1, 3).

I The Lorentz group SO(1, 3) is relevant for the gauge-theory
formulation of GR.

I These solutions are constructed algebraically but they belong
to geometrically distinguished classes.

1Tatiana A. Ivanova, Olaf Lechtenfeld and Alexander D. Popov, Phys. Rev.
Lett. 119 (2017) 061601.
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Lightcone interior foliated with H3 ∼= SO(1, 3)/SO(3)
Lightcone exterior foliated with dS3 ∼= SO(1, 3)/SO(1, 2)

The interior of the lightcone T can be
foliated with unit-hyperboloids H3,

y · y ≡ ηµνyµyν = −1, µ, ν = 0, 1, 2, 3
(1)

where η = (−,+,+,+), using the map

ϕT : R× H3 → T ,

(u, yµ) 7→ eu yµ =: xµ
(2)

and its inverse

ϕ-1
T : T → R× H3 ,

xµ 7→
(

ln |x |, x
µ

|x |

)
,

(3)

where |x | :=
√
|x · x | ≡ eu.
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Lightcone interior foliated with H3 ∼= SO(1, 3)/SO(3)
Lightcone exterior foliated with dS3 ∼= SO(1, 3)/SO(1, 2)

With this, the metric on T becomes

ds2
T = e2u

(
−du2 + ds2

H3

)
. (4)

Now, H3 ∼= SO(1, 3)/SO(3) on account of following maps:

αT : SO(1, 3)/SO(3)→ H3 , [ΛT ] 7→ yµ := (ΛT )µ0

α-1
T : H3 → SO(1, 3)/SO(3) , yµ 7→ [ΛT ] ,

(5)

where the representative element (for right SO(3)-multiplication)

ΛT =

(
γ γβββ

γβββT 1+ (γ − 1)βββ⊗βββ
βββ2

)
; βa =

ya

y0
, γ =

1√
1− ~β2

. (6)

This generic expression for the boost ΛT can be obtained by expo-
nentiation with boost generators Ka:

ΛT = exp (ηa Ka) ; βa :=
ηa√
~η2

tanh
√
~η2 . (7)
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Lightcone interior foliated with H3 ∼= SO(1, 3)/SO(3)
Lightcone exterior foliated with dS3 ∼= SO(1, 3)/SO(1, 2)

The lightcone exterior S can be foliated with de Sitter space dS3

y · y ≡ ηµν yµ yν = 1 , (8)

which is easily seen using ϕS : R × dS3 → S (and its inverse) as
before. The metric on S reads (for spatial parameter u)

ds2
S = e2u

(
du2 + ds2

dS3

)
. (9)

Here, we find that dS3
∼= SO(1, 3)/SO(1, 2) using

αS : SO(1, 3)/SO(1, 2)→ dS3 , [ΛS ] 7→ yµ := (ΛS)µ3

α-1
S : dS3 → SO(1, 3)/SO(1, 2) , yµ 7→ [ΛS ] ,

(10)

where the representative ΛS (under right SO(1, 2)-multiplication) is
obtained with two rotation and one boost generators:

ΛS = exp(κ1J1 + κ2J2 + κ3K3) . (11)
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Interior of the lightcone
Exterior of the lightcone

For reductive coset spaces G/H the Lie algebra g = Lie(G ) with:

[IA, IB ] = f C
AB IC where A,B,C = 1, ..., 6 , (12)

splits into a Lie subalgebra h and an orthogonal complement m such
that [h,m] ⊂ m (a = 1, 2, 3 and i = 4, 5, 6):

g = h⊕m =⇒ {IA} = {Ii} ∪ {Ia} , (13)

which, for symmetric spaces with [m,m] ⊂ h, satisfy

[Ii , Ij ] = f k
ij Ik , [Ii , Ia] = f b

ia Ib and [Ia, Ib] = f i
ab Ii . (14)

The Cartan one-forms eA = g−1dg also splits into {e i}∪{ea} where
e i = e ia e

a and they obey following structure equations:

dea+f a
ib e i∧eb = 0, de i + 1

2 f
i

jk e j∧ek+ 1
2 f

i
ab ea∧eb = 0 . (15)
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Interior of the lightcone
Exterior of the lightcone

For the coset SO(1, 3)/SO(3) we have Ii = Ji and Ia = Ka:

f k
ij = εi−3 j−3 k−3 , f

b
ia = εi−3 a b and f i

ab = −εa b i−3 . (16)

The Maurer–Cartan one-forms Λ−1
T dΛT = eaIa + e i Ii are

ea =

(
δab − ya yb

y0(1 + y0)

)
dyb , e i = εi−3ab

ya

1 + y0
dyb . (17)

Notice that e0 := du & ea provides, locally, an orthonormal-frame
on the cotangent bundle T ∗(U ⊂ R× H3):

ds2
cyl = −du2 + ds2

H3 = −e0 ⊗ e0 + δab e
a ⊗ eb . (18)

They can be pulled back to Minkowski space R1,3 via ϕT (2).
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Interior of the lightcone
Exterior of the lightcone

For the coset SO(1, 3)/SO(1, 2) we employ following generators:

Ii ∈ {K1,K2, J3} and Ia ∈ {J1, J2,K3} (19)

that give rise to following set of structure coefficients

f k
ij = εi−3 j−3 k−3 (1− 2 δk6) , f i

ab = εa b i−3 ,

f b
ia = εi−3 a b (1− 2 δa3)

(20)

where the indices for the terms inside the bracket are not summed
over. The Maurer–Cartan one-forms Λ−1

S dΛS = ea Ia + e i Ii are

ea = dy3−a − y3−a

1 + y3
dy3 , e i = −εi−3 a b

y3−a

1 + y3
dy3−b (21)

yielding the following metric on the cylinder R× dS3 (9)

g̃ = e0 ⊗ e0 + ηab e
a ⊗ eb ; η = (−,+,+) . (22)

8 / 16



Geometry
Lie algebra

Gauge fields

Yang–Mills fields
Stress-energy tensor
Null hypersurface

For a symmetric space, such as dS3 & H3, an SO(1, 3)-invariant2

connection one-form A in “temporal” gauge A0 = 0 is given by

A = e i Ii + φ(u)ea Ia . (23)

The field strength F = dA+A ∧A becomes (φ̇ := ∂uφ)

F = φ̇ Ia e
0 ∧ ea +

1

2
(φ2 − 1) f i

ab Ii e
a ∧ eb . (24)

The corresponding Yang–Mills action, for both cases, simplifies to:

SYM = − 1

4g2

∫
R×H3/dS3

trad(F ∧ ∗F)

=
6

g2

∫
R×H3/dS3

dvol

(
1

2
φ̇2 − V (φ)

)
,

(25)

2D. Kapetanakis & G. Zoupanos, Phys. Rept. 219 (1992) 1.
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which describes a mechanical particle
inside an inverted-double-well potential
V (φ) = −1

2 (φ2−1)2 with EOM:

φ̈ = 2φ (φ2 − 1) . (26)

-2 -1 1 2
ϕ

-4

-3

-2

-1

V

A generic solution φε,u0(u), with energy ε = 1
2 φ̇

2+V (φ) and ‘time’-
shift u0, can be written using Jacobi elliptic functions:

φε,u0(u) = f−(ε) sn
(
f+(ε)(u − u0), k

)
(27)

where f±(ε) =
√

1±
√
−2ε and k2 = f−(ε)

f+(ε) . Special cases include:

φ =


0 for ε = −1

2

tanh (u − u0) for ε = 0

±1 for ε = 0

. (28)
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Pulling the orthonormal-frame (e0, ea) on R × H3 back to T with
the map ϕT (2) we get

e0 := du =
t dt − r dr

t2 − r2
; r :=

√
~x 2 ,

ea =
1

|x |

(
dxa − xa

|x |
dt +

xa

|x |(|x |+ t)
r dr

)
.

(29)

The colour electric Ei := F0i and magnetic Bi := 1
2εijk Fjk fields in

terms of φ(x) = φ(u(x)) are given by

Ea =
1

|x |3

{(
φ2−1

)
ε i−3
ab xb Ii − φ̇

(
t δab − xa xb

|x |+ t

)
Ib

}
,

Ba = − 1

|x |3

{(
φ2−1

) (
t δa i−3 − xa x i−3

|x |+ t

)
Ii + φ̇ ε c

ab xb Ic

}
.

(30)
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Yang–Mills fields
Stress-energy tensor
Null hypersurface

Similarly, one pulls the local orthonormal-frame on R × dS3 back
to S and computes the corresponding color electric- and magnetic-
fields. As it turns out, the stress-energy tensor

Tµν = − 1
2g2 trad

(
Fµα Fνβ η

αβ − 1
4ηµνF

2
)

; F 2 = Fµν F
µν , (31)

evaluates to the same expression, written compactly as follows

Tµν =
ε

g2

4 xµxν − ηµν x ·x
(x ·x)3

, (32)

which is singular on the lightcone! This, curiously, can be written
as a pure “improvement” term:

Tµν = ∂ρSρµν with Sρµν =
ε

g2

xρηµν − xµηρν
(x ·x)2

. (33)
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Yang–Mills fields
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Null hypersurface

One attempt to regularize Tµν is via a nonsingular S reg
ρµν as follows

S reg
ρµν =

ε

g2

xρηµν − xµηρν
(x ·x + δ)2

⇒ T reg
µν =

ε

g2

4 xµxν − ηµνx ·x + 3 δ ηµν
(x ·x + δ)3

,

(34)

which yields vanishing energy and momenta for any finite value of the
regularization parameter δ (fall-off at spatial infinity is fast enough).

Another way to regularize Tµν is to directly shift the denominator
by δ so that (up to an equivalence with above improvement term):

T δ
µν =

ε

g2

4 xµxν − ηµνx ·x
(x ·x + δ)3

∼ ε

g2

−3 δ ηµν
(x ·x + δ)3

, (35)

which is regular in the entire Minkowski space!
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The null (upper L+ or lower L−) hypersurfaces are isomorphic to
SO(1, 3)/ISO(2) where the stability subgroup ISO(2) = E(2) is
spanned by two translations and one rotation generators:

L+ ↔ Ia ∈ {P1,P2,K3} and Ii ∈ {P3,P4, J3}
L− ↔ Ia ∈ {P3,P4,K3} and Ii ∈ {P1,P2, J3}

(36)

where P1 := K1+J2, P2 := K2−J1, P3 := K1−J2 & P4 := K2+J1.
Notice that SO(1, 3)/ISO(2) is not reductive. In fact, m is an-
other g-subalgebra and is not an orthogonal complement. Comput-
ing Maurer–Cartan one-forms (only ea exists) on L+ we find that

ds2
R1,3

∣∣
L+

= 4 e1 ⊗ e1 + 4 e2 ⊗ e2 , (37)

i.e. the metric is degenerate as expected. More importantly, there
is no folitation of the lightcone here and hence no dynamics!
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Summary and outlook

I We obtained new YM solutions on the interior resp. exterior of
lightcone with gauge group G = SO(1, 3) by employing coset
foliation with stabilizer subgroup SO(3) resp. SO(1, 2).

I Although the fields and their stress-energy tensor is singular at
lightcone, the latter can nevertheless be regularized.

I We have non-reductive coset SO(1, 3)/ISO(2) for null (past/future)
hypersurfaces, but there is no foliation – no YM solutions here.

I In ongoing/future works we plan to study Yang–Mills dynamics
on other related/unrelated coset spaces like SO(2, 2)/SO(1, 2)
and G2/SU(3).
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Thank You!

Questions?
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