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Introduction
» There are but a few analytic solutions of vacuum Yang—Mills
equation in Minkowski space, e.g. with SU(2) gauge group'.

» We improve this understanding here by working with non-compact
gauge group SO(1,3).

» The Lorentz group SO(1,3) is relevant for the gauge-theory
formulation of GR.

» These solutions are constructed algebraically but they belong
to geometrically distinguished classes.

!Tatiana A. Ivanova, Olaf Lechtenfeld and Alexander D. Popov, Phys. Rev.

Lett. 119 (2017) 061601.
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Lightcone interior foliated with H> = SO(1,3)/SO(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

The interior of the lightcone T can be
foliated with unit-hyperboloids H3,

Y'}’Enuuyﬂyy = _17 M)V:071a2a3

(1)

where n = (—, +, +, +), using the map
o RxH} =T,

(u, y") — e y# = x#

()

and its inverse

cp'le T—RxH,

X s <In|x|,|)f’) 9

where |x| := /|x - x| = e".
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Lgefgfﬁz Lightcone interior foliated with H3 & SO(1, 3)/SO(3)
Gauge fields Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

With this, the metric on 7 becomes
ds? = e® (—du? + dsfs) - (4)

-
Now, H3 =2 S0O(1,3)/SO(3) on account of following maps:

o, SO(L/SOE) + H )y =Yy (o
ot H? = S0(1,3)/S0(3), y*+ [Ar],
where the representative element (for right SO(3)-multiplication)

PN W’ S A )
TT\BT 1+ (-8R ) o h_

This generic expression for the boost A7 can be obtained by expo-
nentiation with boost generators Kj:

a

ANr=exp(n?Ky) ; p?:= \;nqtanh ViR . (7)
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Ceamdliyy Lightcone interior foliated with H3 & SO(1, 3)/SO(3)

i ellg2re Lightcone exterior foliated with dS3 = SO(1, 3)/50(1, 2)

Gauge fields

The lightcone exterior S can be foliated with de Sitter space dSs

w. v

yoy=nuwy'y’ =1, (8)

which is easily seen using ¢ : R x dS3 — S (and its inverse) as
before. The metric on S reads (for spatial parameter u)

ds? = e (du® + dsig,) - (9)
Here, we find that dS3 = SO(1,3)/S0(1,2) using

«

s S0(1,3)/S0(1,2) = dSs, [As] = y* = (As)s
ol dS; — SO(1,3)/S0(1,2), y*+ [As],

S

(10)

where the representative As (under right SO(1, 2)-multiplication) is
obtained with two rotation and one boost generators:

As = exp(k1J1 + koJo + K3K3) . (11)

5/16



Geometry
Lie algebra
Gauge fields

Interior of the lightcone
Exterior of the lightcone

For reductive coset spaces G/H the Lie algebra g = Lie(G) with:
[la,Is] = £,z 1c where A/B,C = 1,..,6, (12)

splits into a Lie subalgebra b and an orthogonal complement m such
that [h,m] Cm (a=1,2,3 and i = 4,5,6):

g =bhom = {L} = {}u{l}, (13)
which, for symmetric spaces with [m, m] C b, satisfy
U] = £, [l = £l and [l d] = £,') . (14)

The Cartan one-forms e* = g~1dg also splits into {e'}U{e?} where
e' = e} e? and they obey following structure equations:

de®+f, 2 eined = 0, del 115, nek 1 L1r, eneb = 0. (15)
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Interior of the lightcone
Exterior of the lightcone

For the coset SO(1,3)/SO(3) we have [; = J; and I, = K:
fi=ci_3j3k-3, f’ =cizap and f,'=—c,pi-3. (16)

The Maurer—Cartan one-forms A}ld/\T = e, + e'l; are

b
yey -
e? = (5ab - yo(l _|_y0)) dyb , e =¢&i_3ap

a

y b
——dy”. (17
140 y ( )

Notice that € := du & €? provides, locally, an orthonormal-frame
on the cotangent bundle T*(U C R x H3):

dsgyl = —duv® + d5,2.,3 = -0l +o,e70el . (18)

They can be pulled back to Minkowski space R via ¢ (2).
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Interior of the lightcone
Exterior of the lightcone

For the coset SO(1,3)/SO(1,2) we employ following generators:
I,' S {Kl, KQ,J3} and /a c {Jl,JQ, K3} (19)
that give rise to following set of structure coefficients

ka = €i-3;3k-3(1—20k), fabi = abi-3
f.l = ei3ab(1—263)

1

(20)

where the indices for the terms inside the bracket are not summed
over. The Maurer—Cartan one-forms /\g1 dAs = eI, + €' I; are

3-a 3 . y3—a 3
dy y e’ = —€j_3ab ?}/3 d_y - (21)

a_4 3—a Yy
¢ Y 1+ y3

yielding the following metric on the cylinder R x dS3 (9)

g =0 +npef@e’; = (—+4+). (22
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For a symmetric space, such as dS3 & H3, an SO(1, 3)-invariant?
connection one-form A in “temporal” gauge Ay = 0 is given by

A=¢ I, + o(v)e l, . (23)

The field strength F = dA + A A A becomes (¢ := ,¢)
. 1 .
f:¢laeera+§(¢2—l)fab’l,-e"/\eb. (24)

The corresponding Yang—Mills action, for both cases, simplifies to:

1

482 JRrxH3/as,

. dvol (;4)2 - V(qb)) ,

g2 Jrx H3/dS;

Sym = tl“ad(]:/\ *.7:)

(25)

2D. Kapetanakis & G. Zoupanos, Phys. Rept. 219 (1992) 1.
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Geometry Yang—Mills fields

Lie algebra Stress-energy tensor

Gauge fields Null hypersurface
which describes a mechanical particle v
. . . % = = 7 ¢
inside an inverted-double-well potential T~

V(¢) = —3(¢2—1)2 with EOM:

¢ = 2¢(9*-1). (26)

A generic solution ¢ ,,(u), with energy € = %gi)2+ V(¢) and ‘time’-
shift ug, can be written using Jacobi elliptic functions:

beuo(u) = F-(e)sn(fi(e)(u— o), k) (27)
where fi(€) = \/14 /—2¢ and k? = ’;;((3 Special cases include:

0 for €= —%
¢ = {tanh(u— ) for e=0 (28)
+1 for e=0
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Lie algebra Stress-energy tensor
Gauge fields Null hypersurface

Pulling the orthonormal-frame (€%, €?) on R x H* back to T with
the map ¢~ (2) we get

e :=du = 7tdt—rdr; ri=vx2,
o (29)
e? 1 (d a_ X dt + X rdr)
= —(dx?— — _ :
x| [x] [x[(Ix| + 1)

The colour electric E; := Fp; and magnetic B; := suk Fjx fields in
terms of ¢(x) = ¢(u(x)) are given by

2 , 3,b _ ab x? xP
E, = |X’3{(¢ “1)e, I ¢(t5 |X|H)/,:,},

i—-3

B, = BPE {(¢2_1) (t5ai73 - 7)|<X|X+ t)’i +des X /c}
(30)

11/16



Geometry Yang—Mills fields
Lie algebra Stress-energy tensor
Gauge fields Null hypersurface

Similarly, one pulls the local orthonormal-frame on R x dSs3 back
to § and computes the corresponding color electric- and magnetic-
fields. As it turns out, the stress-energy tensor

TMV = _fiétrad (F,u,a FV,B naﬁ - %77”sz> ) F2 = FMV FHv s (3]_)

evaluates to the same expression, written compactly as follows

€ AXuXy — N XX
g? (x-x)3 ’

which is singular on the lightcone! This, curiously, can be written
as a pure “improvement” term:

T;w = (32)

XpNuv — XuTlpv . (33)

€
T, = 0°S ith S, —
pv puv wi for 22 (x-x)2
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One attempt to regularize T, is via a nonsingular S5 as follows
1 piL

greg € XpTuw — XuTpy

YT g2 T (x4 0)2

€ Ax,X — Nuwx-X 4+ 30 N
g2 (x-x+0)3 ’

(34)

reg __
= TW =

which yields vanishing energy and momenta for any finite value of the
regularization parameter § (fall-off at spatial infinity is fast enough).

Another way to regularize T,, is to directly shift the denominator
by ¢ so that (up to an equivalence with above improvement term):

€ 4 X%, — NuuX-X € —30 N (35)
g>  (xx+9)? g% (xx+0)3"

o
TS, =

which is regular in the entire Minkowski space!
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The null (upper L4 or lower £_) hypersurfaces are isomorphic to
SO(1,3)/ISO(2) where the stability subgroup ISO(2) = E(2) is
spanned by two translations and one rotation generators:

£+ <~ Ia € {Pl, PQ, K3} and I,' S {P3, P4,J3}

36
L_ 4 I, € {P3, Py, K3} and [; € {Pl, PQ,J3} ( )

where P1 := K1+, Po := Ko—J1, P3 i = Ki—Jh & Py := Ko+J;.
Notice that SO(1,3)/ISO(2) is not reductive. In fact, m is an-
other g-subalgebra and is not an orthogonal complement. Comput-
ing Maurer—Cartan one-forms (only e? exists) on £ we find that
2 _ 1 1 2.2

ds]Rl,g‘EJr = 4e Qe +4e"®e”, (37)
i.e. the metric is degenerate as expected. More importantly, there
is no folitation of the lightcone here and hence no dynamics!
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Summary and outlook

» \We obtained new YM solutions on the interior resp. exterior of
lightcone with gauge group G = SO(1,3) by employing coset
foliation with stabilizer subgroup SO(3) resp. SO(1,2).

» Although the fields and their stress-energy tensor is singular at
lightcone, the latter can nevertheless be regularized.

» We have non-reductive coset SO(1, 3)/ISO(2) for null (past/future)
hypersurfaces, but there is no foliation — no YM solutions here.

» In ongoing/future works we plan to study Yang—Mills dynamics
on other related/unrelated coset spaces like SO(2,2)/SO(1,2)
and G2/SU(3).
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{1 Leibniz
i Universitit
1094 | Hannover

Thank You!

Questions?
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