DESY string theory journal club, Hamburg

Yang-Mills solutions on Minkowski space via non-compact coset spaces (2206.12009)

Kaushlendra Kumar

In collaboratioan with Olaf Lechtenfeld, Gabriel Picanço Costa and Jona Röhrig

Institute of Theoretical Physics
Leibniz University Hannover
https://k-kumar.netlify.app/
August 23, 2022

Introduction

- There are but a few analytic solutions of vacuum Yang-Mills equation in Minkowski space, e.g. with $\mathrm{SU}(2)$ gauge group ${ }^{1}$.
- We improve this understanding here by working with non-compact gauge group $\mathrm{SO}(1,3)$, i.e. the Lorentz group.
- The Lorentz group $\mathrm{SO}(1,3)$ is relevant for the gauge-theory formulation of GR. This could also be important in some theories of emergent/modified theories of gravity including supergravity and matrix models.
■ These solutions are constructed algebraically but they belong to geometrically distinguished classes.

[^0]The interior of the lightcone \mathcal{T} can be foliated with unit-hyperboloids H^{3},

$$
\begin{equation*}
y \cdot y \equiv \eta_{\mu \nu} y^{\mu} y^{\nu}=-1, \mu, \nu=0,1,2,3 \tag{1}
\end{equation*}
$$

where $\eta=(-,+,+,+)$, using the map

$$
\begin{align*}
& \varphi_{\mathcal{T}}: \mathbb{R} \times H^{3} \rightarrow \mathcal{T}, \tag{2}\\
& \quad\left(u, y^{\mu}\right) \mapsto \mathrm{e}^{u} y^{\mu}=: x^{\mu}
\end{align*}
$$

and its inverse

$$
\begin{align*}
\varphi_{\mathcal{T}}^{-1}: \mathcal{T} & \rightarrow \mathbb{R} \times H^{3}, \\
x^{\mu} & \mapsto\left(\ln |x|, \frac{x^{\mu}}{|x|}\right), \tag{3}
\end{align*}
$$

where $|x|:=\sqrt{|x \cdot x|} \equiv \mathrm{e}^{u}$.

With this, the metric on \mathcal{T} becomes

$$
\begin{equation*}
\mathrm{d} s_{\mathcal{T}}^{2}=\mathrm{e}^{2 u}\left(-\mathrm{d} u^{2}+\mathrm{d} s_{H^{3}}^{2}\right) \tag{4}
\end{equation*}
$$

Now, $H^{3} \cong \mathrm{SO}(1,3) / \mathrm{SO}(3)$ on account of following maps:

$$
\begin{align*}
& \alpha_{\mathcal{T}}: \quad \mathrm{SO}(1,3) / \mathrm{SO}(3) \rightarrow H^{3}, \quad\left[\Lambda_{\mathcal{T}}\right] \mapsto y^{\mu}:=\left(\Lambda_{\mathcal{T}}\right)^{\mu}{ }_{0} \tag{5}\\
& \alpha_{\mathcal{T}}^{-1}: \quad H^{3} \rightarrow \mathrm{SO}(1,3) / \mathrm{SO}(3), \quad y^{\mu} \mapsto\left[\Lambda_{\mathcal{T}}\right],
\end{align*}
$$

where the representative element (for right $\mathrm{SO}(3)$-multiplication)

$$
\Lambda_{\mathcal{T}}=\left(\begin{array}{cc}
\gamma & \gamma \beta \tag{6}\\
\gamma \boldsymbol{\beta}^{T} & \mathbb{1}+(\gamma-1) \frac{\beta \otimes \beta}{\beta^{2}}
\end{array}\right) ; \beta^{a}=\frac{y^{a}}{y^{0}}, \gamma=\frac{1}{\sqrt{1-\vec{\beta}^{2}}}
$$

This generic expression for the boost $\Lambda_{\mathcal{T}}$ can be obtained by exponentiation with boost generators K_{a} :

$$
\begin{equation*}
\Lambda_{\mathcal{T}}=\exp \left(\eta^{a} K_{a}\right) ; \quad \beta^{a}:=\frac{\eta^{a}}{\sqrt{\vec{\eta}^{2}}} \tanh \sqrt{\vec{\eta}^{2}} \tag{7}
\end{equation*}
$$

Looking at the coset corresponence more pictorially:
■ A given timelike vector V_{i} on the
 hyperbola can be brought to the vector $V_{0}=(1,0,0,0)^{T}$ via a boost Λ_{i}.

■ The vector V_{i} is uniquely associated with a coset $\Lambda_{i} S O(3)$ due to the fact that its stabilizer is nothing but $\Lambda_{i} S O(3) \Lambda_{i}^{-1}$.

- The hyperbola H^{3} is the curve σ, parameterised by y, that passes through every coset once.
- Alternatively, H^{3} is the orbit under the adjoint action of the Lorentz group $S O(1,3)$ on the coset space.

The lightcone exterior \mathcal{S} can be foliated with de Sitter space dS_{3}

$$
\begin{equation*}
y \cdot y \equiv \eta_{\mu \nu} y^{\mu} y^{\nu}=1 \tag{8}
\end{equation*}
$$

To see the foliation explicitly we note down the following maps

$$
\begin{align*}
& \varphi_{\mathcal{S}}: \mathbb{R} \times \mathrm{dS}_{3} \rightarrow \mathcal{S}, \quad\left(u, y^{\mu}\right) \mapsto \mathrm{e}^{u} y^{\mu}=: x^{\mu} \\
& \varphi_{\mathcal{S}}^{-1}: \mathcal{S} \rightarrow \mathbb{R} \times \mathrm{dS}_{3}, \quad x^{\mu} \mapsto\left(\ln \sqrt{\eta_{\mu \nu} x^{\mu} x^{\nu}}, \frac{x^{\mu}}{\sqrt{\eta_{\mu \nu} x^{\mu} x^{\nu}}}\right) \tag{9}
\end{align*}
$$

where $\mathrm{e}^{u}=\sqrt{\eta_{\mu \nu} X^{\mu} X^{\nu}}$. This makes the flat metric on \mathcal{S} conformal to a Euclidean cylinder $\mathbb{R} \times \mathrm{dS}_{3}$ with spatial parameter u :

$$
\begin{equation*}
\mathrm{d} s_{\mathcal{S}}^{2}=e^{2 u}\left(\mathrm{~d} u^{2}+\mathrm{d} s_{\mathrm{d} \mathrm{~s}_{3}}^{2}\right), \tag{10}
\end{equation*}
$$

where $\mathrm{ds} s_{\mathrm{dS}_{3}}^{2}$ is the metric on dS_{3} induced from (8). Now, the equivalence between dS_{3} and the coset $S O(1,3) / S O(1,2)$ is clear from

$$
\left.\begin{array}{ll}
\alpha_{\mathcal{S}}: & S O(1,3) / S O(1,2) \rightarrow \mathrm{dS}_{3},
\end{array} \quad[\Lambda] \mapsto \Lambda_{0 \mu}=: y^{\mu}\right)
$$

where the representative element $\Lambda_{\mathcal{S}}$ is defined as follows

$$
\Lambda_{\mathcal{S}}=\left(\begin{array}{cccc}
1+(\gamma-1) \frac{\beta_{1}^{2}}{\beta^{2}} & -(\gamma-1) \frac{\beta_{1} \beta_{2}}{\beta^{2}} & -(\gamma-1) \frac{\beta_{1} \beta_{3}}{\beta^{2}} & \beta_{1} \gamma \\
(\gamma-1) \frac{\beta_{1} \beta_{2}}{\beta^{2}} & 1-(\gamma-1) \frac{\beta_{2}^{2}}{\beta^{2}} & -(\gamma-1) \frac{\beta_{2} \beta_{3}}{\beta^{2}} & \beta_{2} \gamma \\
(\gamma-1) \frac{\beta_{1} \beta_{3}}{\beta^{2}} & -(\gamma-1) \frac{\beta_{2} \beta_{3}}{\beta^{2}} & 1-(\gamma-1) \frac{\beta_{3}^{2}}{\beta^{2}} & \beta_{3} \gamma \\
\beta_{1} \gamma & -\beta_{2} \gamma & -\beta_{3} \gamma & \gamma
\end{array}\right)
$$

with (here we have choosen $(0,0,0,1)$ as the base vector)

$$
\begin{equation*}
\beta_{a}=\frac{y^{a-1}}{y^{3}}, \beta^{2}=-\eta_{a b} \beta^{a} \beta^{b} \geq 0 \quad \text { and } \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \tag{12}
\end{equation*}
$$

Notice the presence of the 3-dimensional Minkowski metric $\eta_{a b}=$ $\operatorname{diag}(-1,1,1)_{a b}$; it's because the stabilizer $S O(1,2)$ here is the isometry group of $\mathbb{R}^{1,2}$. Here again, one obtains $\Lambda_{\mathcal{S}}$, analogous to the previous case (7), by exponentiation with coset generators and using
$\Lambda_{\mathcal{S}}=\exp \left(-\kappa_{3} J_{1}+\kappa_{2} J_{2}+\kappa_{1} K_{3}\right) ; \beta_{a}:=\frac{\kappa_{a}}{\sqrt{\kappa^{2}}} \tan \sqrt{\kappa^{2}} ; \kappa^{2}=-\eta^{a b} \kappa_{a} \kappa_{b}$.

For reductive coset spaces G / H the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$ with:

$$
\begin{equation*}
\left[I_{A}, I_{B}\right]=f_{A B}^{C} I_{C} \quad \text { where } A, B, C=1, \ldots, 6 \tag{13}
\end{equation*}
$$

splits into a Lie subalgebra \mathfrak{h} and an orthogonal complement \mathfrak{m} such that $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}(a=1,2,3$ and $i=4,5,6)$:

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad \Longrightarrow \quad\left\{I_{A}\right\}=\left\{I_{i}\right\} \cup\left\{I_{a}\right\} \tag{14}
\end{equation*}
$$

which, for symmetric spaces with $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$, satisfy

$$
\begin{equation*}
\left[I_{i}, I_{j}\right]=f_{i j}^{k} I_{k}, \quad\left[I_{i}, I_{a}\right]=f_{i a}^{b} I_{b} \quad \text { and } \quad\left[I_{a}, I_{b}\right]=f_{a b}{ }^{i} I_{i} \tag{15}
\end{equation*}
$$

The Cartan one-forms $e^{A}=g^{-1} \mathrm{~d} g$ also splits into $\left\{e^{i}\right\} \cup\left\{e^{a}\right\}$ where $e^{i}=e_{a}^{i} e^{a}$ and they obey following structure equations:

$$
\begin{equation*}
\mathrm{d} e^{a}+f_{i b}{ }^{a} e^{i} \wedge e^{b}=0, \mathrm{~d} e^{i}+\frac{1}{2} f_{j k}{ }^{i} e^{j} \wedge e^{k}+\frac{1}{2} f_{a b}{ }^{i} e^{a} \wedge e^{b}=0 \tag{16}
\end{equation*}
$$

For the coset $\mathrm{SO}(1,3) / \mathrm{SO}(3)$ we have $I_{i}=J_{i}$ and $I_{a}=K_{a}$:

$$
\begin{equation*}
f_{i j}^{k}=\varepsilon_{i-3 j-3 k-3}, f_{i a}^{b}=\varepsilon_{i-3 a b} \quad \text { and } \quad f_{a b}^{i}=-\varepsilon_{a b i-3} . \tag{17}
\end{equation*}
$$

The Maurer-Cartan one-forms $\Lambda_{\mathcal{T}}^{-1} \mathrm{~d} \Lambda_{\mathcal{T}}=e^{a} l_{a}+e^{i} l_{i}$ are

$$
\begin{equation*}
e^{a}=\left(\delta^{a b}-\frac{y^{a} y^{b}}{y^{0}\left(1+y^{0}\right)}\right) \mathrm{d} y^{b}, \quad e^{i}=\varepsilon_{i-3 a b} \frac{y^{a}}{1+y^{0}} \mathrm{~d} y^{b} \tag{18}
\end{equation*}
$$

Notice that $e^{0}:=\mathrm{d} u \& e^{a}$ provides, locally, an orthonormal-frame on the cotangent bundle $T^{*}\left(U \subset \mathbb{R} \times H^{3}\right)$:

$$
\begin{equation*}
\mathrm{d} s_{c y l}^{2}=-\mathrm{d} u^{2}+\mathrm{d} s_{H^{3}}^{2}=-e^{0} \otimes e^{0}+\delta_{a b} e^{a} \otimes e^{b} \tag{19}
\end{equation*}
$$

They can be pulled back to Minkowski space $\mathbb{R}^{1,3}$ via $\varphi_{\mathcal{T}}$ (2).

For the coset $\mathrm{SO}(1,3) / \mathrm{SO}(1,2)$ we employ following generators:

$$
\begin{equation*}
I_{i} \in\left\{K_{1}, K_{2}, J_{3}\right\} \quad \text { and } \quad I_{a} \in\left\{J_{1}, J_{2}, K_{3}\right\} \tag{20}
\end{equation*}
$$

that give rise to following set of structure coefficients

$$
\begin{gather*}
f_{i j}^{k}=\varepsilon_{i-3 j-3 k-3}\left(1-2 \delta_{k 6}\right), \quad f_{a b}^{i}=\varepsilon_{a b i-3} \tag{21}\\
f_{i a}^{b}=\varepsilon_{i-3 a b}\left(1-2 \delta_{a 3}\right)
\end{gather*}
$$

where the indices for the terms inside the bracket are not summed over. The Maurer-Cartan one-forms $\Lambda_{\mathcal{S}}^{-1} \mathrm{~d} \Lambda_{\mathcal{S}}=e^{a} \boldsymbol{I}_{a}+e^{i} I_{i}$ are

$$
\begin{equation*}
e^{a}=\mathrm{d} y^{3-a}-\frac{y^{3-a}}{1+y^{3}} \mathrm{~d} y^{3}, \quad e^{i}=-\varepsilon_{i-3 a b} \frac{y^{3-a}}{1+y^{3}} \mathrm{~d} y^{3-b} \tag{22}
\end{equation*}
$$

yielding the following metric on the cylinder $\mathbb{R} \times \mathrm{dS}_{3}$ (10)

$$
\begin{equation*}
\tilde{g}=e^{0} \otimes e^{0}+\eta_{a b} e^{a} \otimes e^{b} ; \quad \eta=(-,+,+) \tag{23}
\end{equation*}
$$

For a symmetric space, such as $\mathrm{dS}_{3} \& H^{3}$, an $\mathrm{SO}(1,3)$-invariant ${ }^{2}$ connection one-form \mathcal{A} in "temporal" gauge $\mathcal{A}_{0}=0$ is given by

$$
\begin{equation*}
\mathcal{A}=e^{i} I_{i}+\phi(u) e^{a} I_{a} . \tag{24}
\end{equation*}
$$

The field strength $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ becomes $\left(\dot{\phi}:=\partial_{u} \phi\right)$

$$
\begin{equation*}
\mathcal{F}=\dot{\phi} I_{a} e^{0} \wedge e^{a}+\frac{1}{2}\left(\phi^{2}-1\right) f_{a b}{ }^{i} I_{i} e^{a} \wedge e^{b} . \tag{25}
\end{equation*}
$$

The corresponding Yang-Mills action, for both cases, simplifies to:

$$
\begin{align*}
S_{Y M} & =-\frac{1}{4 g^{2}} \int_{\mathbb{R} \times H^{3} / \mathrm{dS}_{3}} \operatorname{tr}_{\mathrm{ad}}(\mathcal{F} \wedge * \mathcal{F}) \\
& =\frac{6}{g^{2}} \int_{\mathbb{R} \times H^{3} / \mathrm{dS}_{3}} \operatorname{dvol}\left(\frac{1}{2} \dot{\phi}^{2}-V(\phi)\right), \tag{26}
\end{align*}
$$

[^1]which describes a mechanical particle inside an inverted-double-well potential $V(\phi)=-\frac{1}{2}\left(\phi^{2}-1\right)^{2}$ with EOM:
\[

$$
\begin{equation*}
\ddot{\phi}=2 \phi\left(\phi^{2}-1\right) . \tag{27}
\end{equation*}
$$

\]

A generic solution $\phi_{\epsilon, u_{0}}(u)$, with energy $\epsilon=\frac{1}{2} \dot{\phi}^{2}+V(\phi)$ and 'time'shift u_{0}, can be written using Jacobi elliptic functions:

$$
\begin{equation*}
\phi_{\epsilon, u_{0}}(u)=f_{-}(\epsilon) \operatorname{sn}\left(f_{+}(\epsilon)\left(u-u_{0}\right), k\right) \tag{28}
\end{equation*}
$$

where $f_{ \pm}(\epsilon)=\sqrt{1 \pm \sqrt{-2 \epsilon}}$ and $k^{2}=\frac{f_{-}(\epsilon)}{f_{+}(\epsilon)}$. Special cases include:

$$
\phi=\left\{\begin{array}{lll}
0 & \text { for } & \epsilon=-\frac{1}{2} \tag{29}\\
\tanh \left(u-u_{0}\right) & \text { for } & \epsilon=0 \\
\pm 1 & \text { for } & \epsilon=0
\end{array}\right.
$$

Pulling the orthonormal-frame (e^{0}, e^{a}) on $\mathbb{R} \times H^{3}$ back to \mathcal{T} with the map $\varphi_{\mathcal{T}}$ (2) we get

$$
\begin{align*}
& e^{0}:=\mathrm{d} u=\frac{t \mathrm{~d} t-r \mathrm{~d} r}{t^{2}-r^{2}} ; \quad r:=\sqrt{\vec{x}^{2}}, \\
& e^{a}=\frac{1}{|x|}\left(\mathrm{d} x^{a}-\frac{x^{a}}{|x|} \mathrm{d} t+\frac{x^{a}}{|x|(|x|+t)} r \mathrm{~d} r\right) . \tag{30}
\end{align*}
$$

The colour electric $E_{i}:=F_{0 i}$ and magnetic $B_{i}:=\frac{1}{2} \varepsilon_{j j k} F_{j k}$ fields in terms of $\phi(x)=\phi(u(x))$ are given by

$$
\begin{align*}
& E_{a}=\frac{1}{|x|^{3}}\left\{\left(\phi^{2}-1\right) \varepsilon_{a b}^{i-3} x^{b} I_{i}-\dot{\phi}\left(t \delta^{a b}-\frac{x^{a} x^{b}}{|x|+t}\right) I_{b}\right\}, \\
& B_{a}=-\frac{1}{|x|^{3}}\left\{\left(\phi^{2}-1\right)\left(t \delta^{a i-3}-\frac{x^{a} x^{i-3}}{|x|+t}\right) I_{i}+\dot{\phi} \varepsilon_{a b}^{c} x^{b} I_{c}\right\} . \tag{31}
\end{align*}
$$

Similarly, one pulls the local orthonormal-frame on $\mathbb{R} \times \mathrm{dS}_{3}$ back to \mathcal{S} and computes the corresponding color electric- and magneticfields. As it turns out, the stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{2 g^{2}} \operatorname{tr}_{\mathrm{ad}}\left(F_{\mu \alpha} F_{\nu \beta} \eta^{\alpha \beta}-\frac{1}{4} \eta_{\mu \nu} F^{2}\right) ; F^{2}=F_{\mu \nu} F^{\mu \nu} \tag{32}
\end{equation*}
$$

evaluates to the same expression, written compactly as follows

$$
\begin{equation*}
T_{\mu \nu}=\frac{\epsilon}{g^{2}} \frac{4 x_{\mu} x_{\nu}-\eta_{\mu \nu} x \cdot x}{(x \cdot x)^{3}} \tag{33}
\end{equation*}
$$

which is singular on the lightcone! This, curiously, can be written as a pure "improvement" term:

$$
\begin{equation*}
T_{\mu \nu}=\partial^{\rho} S_{\rho \mu \nu} \quad \text { with } \quad S_{\rho \mu \nu}=\frac{\epsilon}{g^{2}} \frac{x_{\rho} \eta_{\mu \nu}-x_{\mu} \eta_{\rho \nu}}{(x \cdot x)^{2}} \tag{34}
\end{equation*}
$$

One attempt to regularize $T_{\mu \nu}$ is via a nonsingular $S_{\rho \mu \nu}^{\mathrm{reg}}$ as follows

$$
\begin{align*}
S_{\rho \mu \nu}^{\mathrm{reg}} & =\frac{\epsilon}{g^{2}} \frac{x_{\rho} \eta_{\mu \nu}-x_{\mu} \eta_{\rho \nu}}{(x \cdot x+\delta)^{2}} \\
& \Rightarrow T_{\mu \nu}^{\mathrm{reg}}=\frac{\epsilon}{g^{2}} \frac{4 x_{\mu} x_{\nu}-\eta_{\mu \nu} x \cdot x+3 \delta \eta_{\mu \nu}}{(x \cdot x+\delta)^{3}} \tag{35}
\end{align*}
$$

which yields vanishing energy and momenta for any finite value of the regularization parameter δ (fall-off at spatial infinity is fast enough).
Another way to regularize $T_{\mu \nu}$ is to directly shift the denominator by δ so that (up to an equivalence with above improvement term):

$$
\begin{equation*}
T_{\mu \nu}^{\delta}=\frac{\epsilon}{g^{2}} \frac{4 x_{\mu} x_{\nu}-\eta_{\mu \nu} x \cdot x}{(x \cdot x+\delta)^{3}} \sim \frac{\epsilon}{g^{2}} \frac{-3 \delta \eta_{\mu \nu}}{(x \cdot x+\delta)^{3}} \tag{36}
\end{equation*}
$$

which is regular in the entire Minkowski space!

The null (upper \mathcal{L}_{+}or lower \mathcal{L}_{-}) hypersurfaces are isomorphic to $\mathrm{SO}(1,3) / \mathrm{ISO}(2)$ where the stability subgroup $\operatorname{ISO}(2)=\mathrm{E}(2)$ is spanned by two translations and one rotation generators:

$$
\begin{align*}
& \mathcal{L}_{+} \quad \leftrightarrow \quad I_{a} \in\left\{P_{1}, P_{2}, K_{3}\right\} \quad \text { and } \quad I_{i} \in\left\{P_{3}, P_{4}, J_{3}\right\} \tag{37}\\
& \mathcal{L}_{-} \quad \leftrightarrow \quad I_{a} \in\left\{P_{3}, P_{4}, K_{3}\right\} \quad \text { and } \quad I_{i} \in\left\{P_{1}, P_{2}, J_{3}\right\}
\end{align*}
$$

where $P_{1}:=K_{1}+J_{2}, P_{2}:=K_{2}-J_{1}, P_{3}:=K_{1}-J_{2} \& P_{4}:=K_{2}+J_{1}$. Notice that $\mathrm{SO}(1,3) / \mathrm{ISO}(2)$ is not reductive. In fact, \mathfrak{m} is another \mathfrak{g}-subalgebra and is not an orthogonal complement. Computing Maurer-Cartan one-forms (only e^{a} exists) on \mathcal{L}_{+}we find that

$$
\begin{equation*}
\left.d s_{\mathbb{R}^{1,3}}^{2}\right|_{\mathcal{L}_{+}}=4 e^{1} \otimes e^{1}+4 e^{2} \otimes e^{2} \tag{38}
\end{equation*}
$$

i.e. the metric is degenerate as expected. More importantly, there is no folitation of the lightcone here and hence no dynamics!

Summary and outlook

- We obtained new YM solutions on the interior resp. exterior of lightcone with gauge group $G=\mathrm{SO}(1,3)$ by employing coset foliation with stabilizer subgroup $\mathrm{SO}(3)$ resp. $\mathrm{SO}(1,2)$.
- Although the fields and their stress-energy tensor is singular at lightcone, the latter can nevertheless be regularized.
■ We have non-reductive coset $\mathrm{SO}(1,3) / \mathrm{ISO}(2)$ for null (past/future) hypersurfaces, but there is no foliation - no YM solutions here.
- In ongoing/future works we plan to study Yang-Mills dynamics on other related/unrelated coset spaces like $\mathrm{SO}(2,2) / \mathrm{SO}(1,2)$ and $\mathrm{G}_{2} / \mathrm{SU}(3)$.

Thank You!

Questions?

[^0]: ${ }^{1}$ Tatiana A. Ivanova, Olaf Lechtenfeld and Alexander D. Popov, Phys. Rev. Lett. 119 (2017) 061601.

[^1]: ${ }^{2}$ D. Kapetanakis \& G. Zoupanos, Phys. Rept. 219 (1992) 1.

