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Introduction

m There are but a few analytic solutions of vacuum Yang—Mills
equation in Minkowski space, e.g. with SU(2) gauge group!.

m We improve this understanding here by working with non-compact
gauge group SO(1, 3), i.e. the Lorentz group.

m The Lorentz group SO(1, 3) is relevant for the gauge-theory for-
mulation of GR. This could also be important in some theories
of emergent/modified theories of gravity including supergravity
and matrix models.

m These solutions are constructed algebraically but they belong
to geometrically distinguished classes.

!Tatiana A. Ivanova, Olaf Lechtenfeld and Alexander D. Popov, Phys. Rev.

Lett. 119 (2017) 061601.
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Lightcone interior foliated with H> = SO(1, 3)/SO(3)

The interior of the lightcone 7 can be
foliated with unit-hyperboloids H3,

y'yEnMVyMyV:_]'? H)V:0>15273
(1)

where n = (—, 4, +, +), using the map

ot RxH =T,
(u, y") = e y# = x#

()

and its inverse

1. 3
it T—-RxH

¥
xH = (In\x| x ’> G)

where |x| := /|x - x| = e".
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Lightcone interior foliated with H> = SO(1, 3)/SO(3)

With this, the metric on 7 becomes
ds? = e® (—du® + dsps) - (4)

-
Now, H3 22 S0(1,3)/SO(3) on account of following maps:

a, : SO(1,3)/S0(3) — H®, [Ar] — y* = (A1)
ot H® = S0(1,3)/S0(3), y*+— [Af],

T

(5)

where the representative element (for right SO(3)-multiplication)

‘<

[ B y* 1
AT_('WBT 1+(y-1 )ﬁE‘%ﬂ> B =1 /1_52'(6)

This generic expression for the boost A can be obtained by expo-
nentiation with boost generators Kj:

Ar=exp(n?K;) ; p?:=

\;T?tanh\/n; : (7)
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Lightcone interior foliated with H> = SO(1, 3)/SO(3)

Looking at the coset corresponence more pictorially:
m A given timelike vector V; on the

hyperbola can be brought to the
vector Vo = (1,0,0,0)" via a
boost A;.

m The vector V; is uniquely
associated with a coset A; SO(3)
due to the fact that its stabilizer is

SO(.3)
e nothing but A; SO(3) /\,-_1.
SO m The hyperbola H3 is the curve o,
parameterised by y, that passes
Mo through every coset once.

m Alternatively, H3 is the orbit under
the adjoint action of the Lorentz
group SO(1,3) on the coset space.

N2SO(3)
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Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)
The lightcone exterior S can be foliated with de Sitter space dS3
yoy=Enwy'y” = 1. (8)
To see the foliation explicitly we note down the following maps

vt RxdSz3 =S, (u,y")—e'yt =x"

] xt (9)
gosl : S—RxdS;, xt— (In w/nu,,x“x”,W> ,

where e = /1, xFx7. This makes the flat metric on § conformal
to a Euclidean cylinder R x dSs with spatial parameter u:

ds? = e®¥ (du® + dsls,) (10)

where ds§S3 is the metric on dS3 induced from (8). Now, the equiv-
alence between dS; and the coset SO(1,3)/S0(1,2) is clear from

ag: SO(1,3)/S0(1,2) — dSs ,  [A] — Ag, =: y*

N (11)
ol dS; — 50(1,3)/50(1,2) , y* — [As],

S
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Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

where the representative element Ags is defined as follows
2
1+ -Dg ~0-D%2 -0-1% o
B3
e | G-DB2 1-(-DF —(7 D3

(v—- 1)5;;33 ~(v-1EE 1-(v-1)F B
Bry —Bay —B3y gl
with (here we have choosen (0,0,0,1) as the base vector)
ytoe agb 1
Ba= y3 B~ = —n.p°B” >0 and 7:\/@' (12)

Notice the presence of the 3-dimensional Minkowski metric 7., =
diag(—1,1,1),p; it's because the stabilizer SO(1, 2) here is the isom-
etry group of R12. Here again, one obtains As, analogous to the
previous case (7), by exponentiation with coset generators and using

Ns = exp(—r3h+kKol+k1K3); By = \’/’% tan VK2 ; k2 = —n?k,kp .
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For reductive coset spaces G/H the Lie algebra g = Lie(G) with:
[la,Is] = f,z°1lc where A B,C = 1,..,6, (13)

splits into a Lie subalgebra b and an orthogonal complement m such
that [h,m] Cm (a=1,2,3 and i =4,5,6):

g=bhem = {L} = {itu{l}, (14)
which, for symmetric spaces with [m, m] C b, satisfy
[II'7I_['] = fljklk ) [ll'ala] = f}ablb and [/aalb] = fabi/i . (15)

The Cartan one-forms e* = g~1dg also splits into {e'}U{e?} where
e' = e} e? and they obey following structure equations:

dea+f',-b"ei/\eb = 0, dei+%fj-kiej/\ek+%fbiea/\eb = 0. (16)

a
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Interior of the lightcone

For the coset SO(1,3)/SO(3) we have [; = J; and I, = K;:
f,-jk =ci3j3k3, f’=¢ci3.p and f,/ = —,pi 3. (17)

The Maurer—Cartan one-forms A}ld/\fr =e?l,+ €'l; are

a

y?y - y
e? = <5ab — M) dyb s e = Ei—3ab ?}/0 dyb . (18)

Notice that €® := du & e? provides, locally, an orthonormal-frame
on the cotangent bundle T*(U C R x H3):
dsfy, = —dv’ +dsis = - @+ dpe?@e’ . (19)

They can be pulled back to Minkowski space R via ¢ (2).
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Exterior of the lightcone

For the coset SO(1,3)/SO(1,2) we employ following generators:
li € {Ki,Kz, 3} and [, € {J1,ho, K3} (20)
that give rise to following set of structure coefficients
f,-jk = ci3j-3k3(1—20ke), fip' = €abi-3,

f.l = ci3.p(1—26:3)

1

(21)

where the indices for the terms inside the bracket are not summed
over. The Maurer—Cartan one-forms /\g1 dAg = eI, + €' I; are
3—a 3—a

3 i Yy 3—b
dy ) el = —¢&j-3ab 1 +y3 d.y (22)

a_4q 3—a _ Y
e y 1+y3

yielding the following metric on the cylinder R x dSs3 (10)
g =0l +npe?e’; n = (—++). (23)
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Yang—Mills fields

For a symmetric space, such as dS; & H3, an SO(1,3)—invariant2
connection one-form A in “temporal” gauge Ay = 0 is given by

A=cel; + p(u)e’ I, . (24)

The field strength 7 = dA + A A A becomes (¢ := 0,¢)
: 1 .
]::¢lae0/\ea+§(¢2—1)fab’l,-ea/\eb. (25)

The corresponding Yang—Mills action, for both cases, simplifies to:

1

482 JRxH3 /ds,

-0 dvol (;q'b? - V(</>)) ,

2
8° JRxH3/dss

Sym = tl“ad(]:/\ *]‘—)

(26)

2D. Kapetanakis & G. Zoupanos, Phys. Rept. 219 (1992) 1.
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Yang—Mills fields

which describes a mechanical particle
inside an inverted-double-well potential
V(gp) = —%((;52—1)2 with EOM:

¢ = 20(9*-1). (27)

A generic solution ¢ ,,(u), with energy € = %¢32+ V(¢) and ‘time’-
shift ug, can be written using Jacobi elliptic functions:

Peuo(u) = f-(e)sn(fi(e)(u— o), k) (28)
where fi(e) = \/1++v/—2¢ and k? = ';;((3 Special cases include:
0 for €= —%
¢ = {tanh(u—uwp) for e=0 (29)
+1 for e=0
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Yang—Mills fields

Pulling the orthonormal-frame (€%, e?) on R x H3 back to T with
the map ¢ (2) we get

eo::duzw; ri=vx2,
tc—r
1 x? x? (30)
e’ = —(dxa— —dt—l—irdr) )
x| x| [x|(|x] + 1)
The colour electric E; := Fp; and magnetic B; := %5,-],( Fjx fields in
terms of ¢(x) = ¢(u(x)) are given by
E.— {(¢2 1) I3 bl ¢( 6ab XXb)/}
TP x|+t :
1 : x? x1—3
B,=—— 21 (t&a’_3—7) l
=@ ) O

(31)
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Stress-energy tensor

Similarly, one pulls the local orthonormal-frame on R x dS3 back
to & and computes the corresponding color electric- and magnetic-
fields. As it turns out, the stress-energy tensor

T/'“/ = _f;—Ztrad(F,uOl Fl/ﬁ,r/aﬂ - %nuyl__2> , F2 == F/'“j F'L”j’ (32)

evaluates to the same expression, written compactly as follows

€ A XX — Nyuw XX

T —
e g2 (x-x)3 ’

(33)

which is singular on the lightcone! This, curiously, can be written
as a pure “improvement” term:

. € XpNMuw — XuMow
T, = 0°S,. th , = = Xl wlpv (34
Iz 9" Spu w1 Spu g2 (x-x)2 (34)
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Stress-energy tensor

One attempt to regularize T, is via a nonsingular S,/ as follows

greg _ € XMl T Xullpv
puv g2 (xx+0)2 25
‘o € 4xux — NuX-Xx + 30N (35)
=T = —

g’ (x-x +4) ’

which yields vanishing energy and momenta for any finite value of the
regularization parameter § (fall-off at spatial infinity is fast enough).

Another way to regularize T,, is to directly shift the denominator
by d so that (up to an equivalence with above improvement term):

4 X, X — N XX € —30nuw

~y

€
g2 (xx+0)3 g2 (xx+6)3"

s _
T = (36)

which is regular in the entire Minkowski space!
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Null hypersurface

The null (upper £ or lower £_) hypersurfaces are isomorphic to
SO(1,3)/ISO(2) where the stability subgroup ISO(2) = E(2) is
spanned by two translations and one rotation generators:

£+ < l; € {Pl, Pg, K3} and [; € {P3, P4,J3}

37
L_ < l; € {P3, Py, K3} and [; € {Pl, P2,J3} ( )

where P := K1+, P, .= Ko—J1, P3 .= Ki—Jh & Py == Ko+ 1.
Notice that SO(1,3)/ISO(2) is not reductive. In fact, m is an-
other g-subalgebra and is not an orthogonal complement. Comput-
ing Maurer—Cartan one-forms (only e? exists) on £ we find that

ds§1,3‘£+ — 4el@el +4e2®@e?, (38)

i.e. the metric is degenerate as expected. More importantly, there
is no folitation of the lightcone here and hence no dynamics!
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Null hypersurface

Summary and outlook

m We obtained new YM solutions on the interior resp. exterior of
lightcone with gauge group G = SO(1,3) by employing coset
foliation with stabilizer subgroup SO(3) resp. SO(1,2).

m Although the fields and their stress-energy tensor is singular at
lightcone, the latter can nevertheless be regularized.

m We have non-reductive coset SO(1, 3)/ISO(2) for null (past/future)
hypersurfaces, but there is no foliation — no YM solutions here.

m In ongoing/future works we plan to study Yang—Mills dynamics
on other related/unrelated coset spaces like SO(2,2)/SO(1,2)
and G,/SU(3).
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Null hypersurface

7 Leibniz
j Universitit
t09' 4 | Hannover

Thank You!

Questions?
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