Gauge fields

DESY string theory journal club, Hamburg

Yang–Mills solutions on Minkowski space via non-compact coset spaces (2206.12009)

Kaushlendra Kumar

In collaboratioan with Olaf Lechtenfeld, Gabriel Picanço Costa and Jona Röhrig

Institute of Theoretical Physics

Leibniz University Hannover

https://k-kumar.netlify.app/

August 23, 2022

Introduction

- There are but a few analytic solutions of vacuum Yang-Mills equation in Minkowski space, e.g. with SU(2) gauge group¹.
- We improve this understanding here by working with non-compact gauge group SO(1, 3), i.e. the Lorentz group.
- The Lorentz group SO(1,3) is relevant for the gauge-theory formulation of GR. This could also be important in some theories of emergent/modified theories of gravity including supergravity and matrix models.
- These solutions are constructed algebraically but they belong to geometrically distinguished classes.

¹Tatiana A. Ivanova, Olaf Lechtenfeld and Alexander D. Popov, *Phys. Rev. Lett.* **119** (2017) 061601.

000

Lightcone interior foliated with $H^3 \cong SO(1,3)/SO(3)$

The interior of the lightcone \mathcal{T} can be foliated with unit-hyperboloids H^3 ,

$$y \cdot y \equiv \eta_{\mu\nu} y^{\mu} y^{\nu} = -1, \ \mu, \nu = 0, 1, 2, 3$$
(1)

where $\eta=(-,+,+,+)\text{,}$ using the map

$$\begin{split} \varphi_{\tau} : & \mathbb{R} \times H^3 \to \mathcal{T} , \\ & (u, y^{\mu}) \mapsto e^u y^{\mu} =: x^{\mu} \end{split}$$

and its inverse

$$arphi_{ au}^{-1} : \ \mathcal{T} o \mathbb{R} imes H^3 \ , \ x^{\mu} \mapsto \left(\ln |x|, rac{x^{\mu}}{|x|}
ight) \ ,$$

where
$$|x| := \sqrt{|x \cdot x|} \equiv e^{u}$$
.

000	

Gauge fields

Lightcone interior foliated with $H^3 \cong \mathrm{SO}(1,3)/\mathrm{SO}(3)$

With this, the metric on ${\mathcal T}$ becomes

$$ds_{\tau}^2 = e^{2u} \left(-du^2 + ds_{H^3}^2 \right)$$
 (4)

Now, $H^3 \cong \mathrm{SO}(1,3)/\mathrm{SO}(3)$ on account of following maps:

$$\begin{aligned} &\alpha_{\tau} : \ \mathrm{SO}(1,3)/\mathrm{SO}(3) \to H^3 \ , \quad [\Lambda_{\mathcal{T}}] \mapsto y^{\mu} := (\Lambda_{\mathcal{T}})^{\mu}_{\ 0} \\ &\alpha_{\tau}^{-1} : \ H^3 \to \mathrm{SO}(1,3)/\mathrm{SO}(3) \ , \quad y^{\mu} \mapsto [\Lambda_{\mathcal{T}}] \ , \end{aligned}$$
(5)

where the representative element (for right SO(3)-multiplication)

$$\Lambda_{\mathcal{T}} = \begin{pmatrix} \gamma & \gamma \boldsymbol{\beta} \\ \gamma \boldsymbol{\beta}^{\mathcal{T}} & \mathbb{1} + (\gamma - 1) \frac{\boldsymbol{\beta} \otimes \boldsymbol{\beta}}{\boldsymbol{\beta}^2} \end{pmatrix} ; \ \boldsymbol{\beta}^{a} = \frac{y^{a}}{y^{0}} , \ \gamma = \frac{1}{\sqrt{1 - \vec{\beta}^2}} . \ (6)$$

This generic expression for the boost Λ_T can be obtained by exponentiation with boost generators K_a :

$$\Lambda_{\mathcal{T}} = \exp\left(\eta^a \, K_a\right) \; ; \quad \beta^a := \frac{\eta^a}{\sqrt{\eta^2}} \tanh\sqrt{\eta^2} \; . \tag{7}$$

Lightcone interior foliated with $H^3 \cong SO(1,3)/SO(3)$

Looking at the coset corresponence more pictorially:

A given timelike vector V_i on the hyperbola can be brought to the vector V₀ = (1,0,0,0)^T via a boost Λ_i.

- The vector V_i is uniquely associated with a coset $\Lambda_i SO(3)$ due to the fact that its stabilizer is nothing but $\Lambda_i SO(3) \Lambda_i^{-1}$.
- The hyperbola H³ is the curve σ, parameterised by y, that passes through every coset once.
- Alternatively, H³ is the orbit under the adjoint action of the Lorentz group SO(1,3) on the coset space.

	Lie algebra	Gauge fields
htcone exterior foliated with dSa	$\simeq 50(1,3)/50(1,2)$	

The lightcone exterior S can be foliated with de Sitter space dS_3

Lig

$$\mathbf{y} \cdot \mathbf{y} \equiv \eta_{\mu\nu} \, \mathbf{y}^{\mu} \, \mathbf{y}^{\nu} = \mathbf{1} \, . \tag{8}$$

To see the foliation explicitly we note down the following maps

$$\begin{split} \varphi_{\mathcal{S}} : \ \mathbb{R} \times \mathsf{dS}_{3} \to \mathcal{S} \ , \quad (u, y^{\mu}) \mapsto \mathsf{e}^{u} y^{\mu} =: x^{\mu} \\ \varphi_{\mathcal{S}}^{-1} : \ \mathcal{S} \to \mathbb{R} \times \mathsf{dS}_{3} \ , \quad x^{\mu} \mapsto \left(\ln \sqrt{\eta_{\mu\nu} x^{\mu} x^{\nu}}, \frac{x^{\mu}}{\sqrt{\eta_{\mu\nu} x^{\mu} x^{\nu}}} \right) \ , \end{split}$$
(9)

where $e^u = \sqrt{\eta_{\mu\nu}x^{\mu}x^{\nu}}$. This makes the flat metric on S conformal to a Euclidean cylinder $\mathbb{R} \times dS_3$ with spatial parameter u:

$$\mathrm{d}s_{S}^{2} = e^{2u} \left(\mathrm{d}u^{2} + \mathrm{d}s_{\mathsf{d}S_{3}}^{2}\right) \ , \tag{10}$$

where $ds_{dS_3}^2$ is the metric on dS₃ induced from (8). Now, the equivalence between dS₃ and the coset SO(1,3)/SO(1,2) is clear from

$$\begin{aligned} \alpha_{\mathcal{S}} : & SO(1,3)/SO(1,2) \to \mathrm{dS}_3 , \quad [\Lambda] \mapsto \Lambda_{0\mu} =: y^{\mu} \\ \alpha_{\mathcal{S}}^{-1} : & \mathrm{dS}_3 \to SO(1,3)/SO(1,2) , \quad y^{\mu} \mapsto [\Lambda_{\mathcal{S}}] , \end{aligned}$$
 (11)

Lightcone exterior foliated with $dS_3 \cong SO(1,3)/SO(1,2)$

where the representative element $\Lambda_{\mathcal{S}}$ is defined as follows

$$\Lambda_{\mathcal{S}} = \begin{pmatrix} 1 + (\gamma - 1)\frac{\beta_{1}^{2}}{\beta^{2}} & -(\gamma - 1)\frac{\beta_{1}\beta_{2}}{\beta^{2}} & -(\gamma - 1)\frac{\beta_{1}\beta_{3}}{\beta^{2}} & \beta_{1}\gamma \\ (\gamma - 1)\frac{\beta_{1}\beta_{2}}{\beta^{2}} & 1 - (\gamma - 1)\frac{\beta_{2}^{2}}{\beta^{2}} & -(\gamma - 1)\frac{\beta_{2}\beta_{3}}{\beta^{2}} & \beta_{2}\gamma \\ (\gamma - 1)\frac{\beta_{1}\beta_{3}}{\beta^{2}} & -(\gamma - 1)\frac{\beta_{2}\beta_{3}}{\beta^{2}} & 1 - (\gamma - 1)\frac{\beta_{3}^{2}}{\beta^{2}} & \beta_{3}\gamma \\ \beta_{1}\gamma & -\beta_{2}\gamma & -\beta_{3}\gamma & \gamma \end{pmatrix}$$

with (here we have choosen (0,0,0,1) as the base vector)

$$\beta_a = \frac{y^{a-1}}{y^3}$$
, $\beta^2 = -\eta_{ab}\beta^a\beta^b \ge 0$ and $\gamma = \frac{1}{\sqrt{1-\beta^2}}$. (12)

Notice the presence of the 3-dimensional Minkowski metric $\eta_{ab} = \text{diag}(-1, 1, 1)_{ab}$; it's because the stabilizer SO(1, 2) here is the isometry group of $\mathbb{R}^{1,2}$. Here again, one obtains Λ_S , analogous to the previous case (7), by exponentiation with coset generators and using

$$\Lambda_{\mathcal{S}} = \exp(-\kappa_3 J_1 + \kappa_2 J_2 + \kappa_1 K_3) \; ; \; \beta_a := \frac{\kappa_a}{\sqrt{\kappa^2}} \tan \sqrt{\kappa^2} \; ; \; \kappa^2 = -\eta^{ab} \kappa_a \kappa_b \; .$$

metry Lie algebra Gauge fields O OO O OO O OO O OO O OO

For reductive coset spaces G/H the Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$ with:

$$[I_A, I_B] = f_{AB}^{\ C} I_C$$
 where $A, B, C = 1, ..., 6$, (13)

splits into a Lie subalgebra \mathfrak{h} and an orthogonal complement \mathfrak{m} such that $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m}$ (a = 1, 2, 3 and i = 4, 5, 6):

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \implies \{I_A\} = \{I_i\} \cup \{I_a\}, \quad (14)$$

which, for symmetric spaces with $[\mathfrak{m},\mathfrak{m}] \subset \mathfrak{h}$, satisfy

$$[I_i, I_j] = f_{ij}^{\ k} I_k$$
, $[I_i, I_a] = f_{ia}^{\ b} I_b$ and $[I_a, I_b] = f_{ab}^{\ i} I_i$. (15)

The Cartan one-forms $e^{A} = g^{-1}dg$ also splits into $\{e^{i}\} \cup \{e^{a}\}$ where $e^{i} = e^{i}_{a}e^{a}$ and they obey following structure equations:

$$de^{a} + f_{ib}^{\ a} e^{i} \wedge e^{b} = 0, \ de^{i} + \frac{1}{2} f_{jk}^{\ i} e^{j} \wedge e^{k} + \frac{1}{2} f_{ab}^{\ i} e^{a} \wedge e^{b} = 0.$$
 (16)

For the coset SO(1,3)/SO(3) we have $I_i = J_i$ and $I_a = K_a$:

$$f_{ij}^{\ k} = \varepsilon_{i-3 \ j-3 \ k-3}$$
, $f_{ia}^{\ b} = \varepsilon_{i-3 \ a \ b}$ and $f_{ab}^{\ i} = -\varepsilon_{a \ b \ i-3}$. (17)

The Maurer–Cartan one-forms $\Lambda_{\mathcal{T}}^{-1}\mathrm{d}\Lambda_{\mathcal{T}}=e^{a}I_{a}+e^{i}I_{i}$ are

$$e^{a} = \left(\delta^{ab} - \frac{y^{a}y^{b}}{y^{0}(1+y^{0})}\right) dy^{b} , \quad e^{i} = \varepsilon_{i-3ab} \frac{y^{a}}{1+y^{0}} dy^{b} .$$
(18)

Notice that $e^0 := du \& e^a$ provides, locally, an orthonormal-frame on the cotangent bundle $T^*(U \subset \mathbb{R} \times H^3)$:

$$\mathrm{d}s^2_{cyl} = -\mathrm{d}u^2 + \mathrm{d}s^2_{H^3} = -e^0 \otimes e^0 + \delta_{ab} \, e^a \otimes e^b \;. \tag{19}$$

They can be pulled back to Minkowski space $\mathbb{R}^{1,3}$ via $\varphi_{\mathcal{T}}$ (2).

	Gauge fields
000	000
Execution of the University	

For the coset $\mathrm{SO}(1,3)/\mathrm{SO}(1,2)$ we employ following generators:

$$I_i \in \{K_1, K_2, J_3\}$$
 and $I_a \in \{J_1, J_2, K_3\}$ (20)

that give rise to following set of structure coefficients

$$f_{ij}^{\ k} = \varepsilon_{i-3 \ j-3 \ k-3} (1 - 2 \ \delta_{k6}) , \quad f_{ab}^{\ i} = \varepsilon_{a \ b \ i-3} ,$$

$$f_{ia}^{\ b} = \varepsilon_{i-3 \ a \ b} (1 - 2 \ \delta_{a3})$$
(21)

where the indices for the terms inside the bracket are not summed over. The Maurer–Cartan one-forms $\Lambda_S^{-1} d\Lambda_S = e^a I_a + e^i I_i$ are

$$e^{a} = dy^{3-a} - \frac{y^{3-a}}{1+y^{3}} dy^{3}$$
, $e^{i} = -\varepsilon_{i-3 \ a \ b} \frac{y^{3-a}}{1+y^{3}} dy^{3-b}$ (22)

yielding the following metric on the cylinder $\mathbb{R}\times dS_3$ (10)

$$\tilde{g} = e^0 \otimes e^0 + \eta_{ab} e^a \otimes e^b ; \quad \eta = (-,+,+) .$$
 (23)

Lie algebra	
	000
0	000

Yang-Mills fields

For a symmetric space, such as $dS_3 \& H^3$, an SO(1,3)-invariant² connection one-form \mathcal{A} in "temporal" gauge $\mathcal{A}_0 = 0$ is given by

$$\mathcal{A} = e^{i} I_{i} + \phi(u) e^{a} I_{a} . \qquad (24)$$

The field strength $\mathcal{F} = \mathrm{d}\mathcal{A} + \mathcal{A} \wedge \mathcal{A}$ becomes $(\dot{\phi} := \partial_u \phi)$

$$\mathcal{F} = \dot{\phi} \, I_a \, e^0 \wedge e^a + \frac{1}{2} (\phi^2 - 1) \, f_{ab}^{\ i} \, I_i \, e^a \wedge e^b \; . \tag{25}$$

The corresponding Yang-Mills action, for both cases, simplifies to:

$$S_{YM} = -\frac{1}{4g^2} \int_{\mathbb{R} \times H^3/dS_3} \operatorname{tr}_{ad}(\mathcal{F} \wedge *\mathcal{F})$$

$$= \frac{6}{g^2} \int_{\mathbb{R} \times H^3/dS_3} \operatorname{dvol}\left(\frac{1}{2}\dot{\phi}^2 - V(\phi)\right) , \qquad (26)$$

²D. Kapetanakis & G. Zoupanos, Phys. Rept. **219** (1992) 1.

Geometry 000 00 Gauge fields 000 000

Yang-Mills fields

which describes a mechanical particle inside an inverted-double-well potential $V(\phi) = -\frac{1}{2}(\phi^2 - 1)^2$ with EOM:

$$\ddot{\phi} = 2 \phi (\phi^2 - 1)$$
 . (27)

A generic solution $\phi_{\epsilon,u_0}(u)$, with energy $\epsilon = \frac{1}{2}\dot{\phi}^2 + V(\phi)$ and 'time'-shift u_0 , can be written using Jacobi elliptic functions:

$$\phi_{\epsilon,u_0}(u) = f_{-}(\epsilon) \operatorname{sn}(f_{+}(\epsilon)(u-u_0),k)$$
(28)

where $f_{\pm}(\epsilon) = \sqrt{1 \pm \sqrt{-2\epsilon}}$ and $k^2 = \frac{f_{-}(\epsilon)}{f_{+}(\epsilon)}$. Special cases include:

$$\phi = \begin{cases} 0 & \text{for} & \epsilon = -\frac{1}{2} \\ \tanh(u - u_0) & \text{for} & \epsilon = 0 \\ \pm 1 & \text{for} & \epsilon = 0 \end{cases}$$
(29)

	Lie algebra	
		000
00		00
	0	000

Yang-Mills fields

Pulling the orthonormal-frame (e^0, e^a) on $\mathbb{R} \times H^3$ back to \mathcal{T} with the map φ_{τ} (2) we get

$$e^{0} := du = \frac{t dt - r dr}{t^{2} - r^{2}}; \quad r := \sqrt{\vec{x}^{2}},$$

$$e^{a} = \frac{1}{|x|} \left(dx^{a} - \frac{x^{a}}{|x|} dt + \frac{x^{a}}{|x|(|x| + t)} r dr \right).$$
(30)

The colour electric $E_i := F_{0i}$ and magnetic $B_i := \frac{1}{2}\varepsilon_{ijk} F_{jk}$ fields in terms of $\phi(x) = \phi(u(x))$ are given by

$$E_{a} = \frac{1}{|x|^{3}} \left\{ \left(\phi^{2} - 1 \right) \varepsilon_{ab}^{\ i-3} x^{b} I_{i} - \dot{\phi} \left(t \, \delta^{ab} - \frac{x^{a} x^{b}}{|x| + t} \right) I_{b} \right\} ,$$

$$B_{a} = -\frac{1}{|x|^{3}} \left\{ \left(\phi^{2} - 1 \right) \left(t \, \delta^{a \, i-3} - \frac{x^{a} x^{i-3}}{|x| + t} \right) I_{i} + \dot{\phi} \, \varepsilon_{ab}^{\ c} \, x^{b} \, I_{c} \right\} .$$
(31)

	Lie algebra	
000		000
		• • • • • • • • • • • • • • • • • • •

Stress-energy tensor

Similarly, one pulls the local orthonormal-frame on $\mathbb{R} \times dS_3$ back to S and computes the corresponding color electric- and magnetic-fields. As it turns out, the stress-energy tensor

$$T_{\mu\nu} = -\frac{1}{2g^2} \operatorname{tr}_{\mathsf{ad}} \left(F_{\mu\alpha} F_{\nu\beta} \eta^{\alpha\beta} - \frac{1}{4} \eta_{\mu\nu} F^2 \right); \ F^2 = F_{\mu\nu} F^{\mu\nu}, \ (32)$$

evaluates to the same expression, written compactly as follows

$$T_{\mu\nu} = \frac{\epsilon}{g^2} \frac{4 x_{\mu} x_{\nu} - \eta_{\mu\nu} x \cdot x}{(x \cdot x)^3} , \qquad (33)$$

which is singular on the lightcone! This, curiously, can be written as a pure "improvement" term:

$$T_{\mu\nu} = \partial^{\rho} S_{\rho\mu\nu}$$
 with $S_{\rho\mu\nu} = \frac{\epsilon}{g^2} \frac{x_{\rho} \eta_{\mu\nu} - x_{\mu} \eta_{\rho\nu}}{(x \cdot x)^2}$. (34)

	Lie algebra	
000		000
		00
C		

One attempt to regularize $T_{\mu\nu}$ is via a nonsingular $S_{\rho\mu\nu}^{\rm reg}$ as follows

$$S_{\rho\mu\nu}^{\text{reg}} = \frac{\epsilon}{g^2} \frac{x_\rho \eta_{\mu\nu} - x_\mu \eta_{\rho\nu}}{(x \cdot x + \delta)^2} \Rightarrow T_{\mu\nu}^{\text{reg}} = \frac{\epsilon}{g^2} \frac{4 x_\mu x_\nu - \eta_{\mu\nu} x \cdot x + 3 \delta \eta_{\mu\nu}}{(x \cdot x + \delta)^3} , \qquad (35)$$

which yields vanishing energy and momenta for any finite value of the regularization parameter δ (fall-off at spatial infinity is fast enough).

Another way to regularize $T_{\mu\nu}$ is to directly shift the denominator by δ so that (up to an equivalence with above improvement term):

$$T^{\delta}_{\mu\nu} = \frac{\epsilon}{g^2} \frac{4 x_{\mu} x_{\nu} - \eta_{\mu\nu} x \cdot x}{(x \cdot x + \delta)^3} \sim \frac{\epsilon}{g^2} \frac{-3 \delta \eta_{\mu\nu}}{(x \cdot x + \delta)^3} , \qquad (36)$$

which is regular in the entire Minkowski space!

	Lie algebra	
000		000
		●00

Null hypersurface

The null (upper \mathcal{L}_+ or lower \mathcal{L}_-) hypersurfaces are isomorphic to SO(1,3)/ISO(2) where the stability subgroup ISO(2) = E(2) is spanned by two translations and one rotation generators:

where $P_1 := K_1 + J_2$, $P_2 := K_2 - J_1$, $P_3 := K_1 - J_2$ & $P_4 := K_2 + J_1$. Notice that SO(1,3)/ISO(2) is not reductive. In fact, \mathfrak{m} is another g-subalgebra and is not an orthogonal complement. Computing Maurer-Cartan one-forms (only e^a exists) on \mathcal{L}_+ we find that

$$ds_{\mathbb{R}^{1,3}}^{2}\big|_{\mathcal{L}_{+}} = 4 e^{1} \otimes e^{1} + 4 e^{2} \otimes e^{2} , \qquad (38)$$

i.e. the metric is degenerate as expected. More importantly, there is no folitation of the lightcone here and hence no dynamics!

Geometry 000 00	Gauge fields ○○○ ○●○
Null hypersurface	

Summary and outlook

- We obtained new YM solutions on the interior resp. exterior of lightcone with gauge group G = SO(1,3) by employing coset foliation with stabilizer subgroup SO(3) resp. SO(1,2).
- Although the fields and their stress-energy tensor is singular at lightcone, the latter can nevertheless be regularized.
- We have non-reductive coset SO(1, 3)/ISO(2) for null (past/future) hypersurfaces, but there is no foliation no YM solutions here.
- In ongoing/future works we plan to study Yang–Mills dynamics on other related/unrelated coset spaces like SO(2,2)/SO(1,2) and G₂/SU(3).

Null hypersurface

Thank You!

Questions?