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Why non-commutative spaces?

I In 1999, Witten along with Sieberg demostrated that
in certain low energy regime of string theory,
non-commutativity of Moyal type crops up.

I Non-commutative geometry (NCG) as developed by
Alain Connes has been successfully applied to many
problems of physical interest like quantum Hall effect,
Zitterbewegung and is a promising candidate for
quantum gravity.

I Connes alongwith others have been successful in
reformulating standard model based on NCG through
“almost-commutative” manifold and has provided a
remarkable geometrical interpretation for the Higgs
field.



Moyal plane: Hilbert-Schmidt formalism
We begin with the non-commutative algebra

[x̂α, x̂β] = iθαβ = iθεαβ ; α, β ∈ {1, 2}, (1)

which along with

[x̂α, p̂β] = i~δαβ ; [p̂α, p̂β] = 0, (2)

gives the modified Hiesenberg algebra. This renders the
configuration space “fuzzy” due to the uncertainty relation:

(∆x1)(∆x2) ≥ θ

2
. (3)

Now one can define following ladder operators

b̂ =
1√
2θ

(x̂1 + ix̂2) ; b̂† =
1√
2θ

(x̂1 − ix̂2) (4)

satisfying [b̂, b̂†] = 1 and b̂ |0〉 = 0.



Moyal plane: Hilbert-Schmidt formalism
One can then naturally associate a Hilbert space Hc to the
coordiate algebra (1), which is isomorphic to the Hilbert
space of 1D qunatum mechanical SHO.

Hc = span

{
|n〉 =

1√
n!

(b̂†)n |0〉
}∞
n=0

(5)

This replaces the 2D configuration space of commutative
QM. The quantum Hilbert space Hq then comes
automatically by considering the set of Hilbert-Schmidt
operators on Hc (which again forms a Hilbert space) as

Hq = {ψ : ψ ∈ B(Hc), T rc(ψ
†ψ) <∞}. (6)

Also the associated inner product (and thus norm) can
easily be defined by

(φ|ψ) = Trc(φ
†ψ). (7)



Moyal plane: Hilbert-Schmidt formalism
The next step is to look for a unitary representation X̂i and
P̂i of position x̂i and canonical momenta p̂i respectively. It
turns out that, following representation does the job.

X̂iψ = x̂iψ, P̂iψ =
1

θ
εij[x̂j, ψ] =

1

θ
εij

(
X̂L
j − X̂R

j

)
ψ (8)

Here the left/right action for any ψ ∈ Hq is defined as

X̂L
i ψ ≡ X̂iψ = x̂iψ ; X̂R

i ψ = ψx̂i : ∀ ψ =
∞∑

m,n=0

Cmn |m〉 〈n|

These operators respect the modified Heisengberg algebra
i.e.

[X̂L
i , X̂

L
j ] ≡ [X̂i, X̂j] = iθεij ; [X̂i, P̂j] = iδij ; [P̂i, P̂j] = 0

(9)
Using this prescription one can work out various QM
problem in this space (e.g. see [1])



Connes spectral distance
How to study the geometry of such NC spaces where the
notion of points, lines etc. breaks down?
NCG provides a way out a set of data called “spectral
triple” (A,H,D), which encodes the geometrical
information of generalized spaces.

I H: The Hilbert space.

I A: An involutive C∗ algebra (satisfying
‖a∗a‖ = ‖aa∗‖ = ‖a‖2), with some faithful
representation (π) as bounded operators on H.

I D: A self-adjoint operator on H called generalized
Dirac operator.

The primary motivation for such a construction came from
the celebrated theorem by Gelfand and Naimark which
establishes duality between (resp. catagories of) C∗

Algebra and Topological spaces.



Connes spectral distance
The role of Dirac operator is to define the neccessary
differential structure on the manofold while the link
between algebra A and Hilbert space H is provided by
following isometric embedding

π(A) ↪→ B(H). (10)

Then, one defines States ω as positive linear functionals of
norm 1 over A. These are the analogue of points in usual
commutative geometry. Distance between any two states
(ω, ω′) are given by

d(ω, ω′) = sup
a∈B
|ω(a)− ω′(a)|,

B = {a ∈ A : ‖[D, π(a)]‖op ≤ 1} ,

‖O‖op = sup
φ∈H

‖Oφ‖
‖φ‖

,

(11)



Spectral distance: Two point space

It’s an abstract space of two c-numbers with spectral triple(
A2 = C2,H2 = C2,D2 =

(
0 Λ
Λ̄ 0

))
where Λ is a constant

complex parameter of length-inverse dimension. Any
algebra element can be written in both the canonical basis

Span
{(1

0

)
,

(
0
1

)}
, or the 2× 2 matrix basis

Span
{(1 0

0 0

)
(
.
= ω1),

(
0 0
0 1

)
(
.
= ω2)

}
. After calculation

one gets (see [2])

dDF
(ω1, ω2) =

1

Λ



Spectral distance: Moyal plane

Here the spectral triple is AM := Hq, HM := Hc ⊗ C2 and

DM = P̂1σ1 + P̂2σ2 =
√

2
θ

(
0 b†

b 0

)
The elements a ∈ A acts on the elements ψ =

(
|ψ1〉
|ψ2〉

)
∈ H

through diagonal representation π(a) =

(
a 0
0 a

)
. Then one

can calculate the spectral distance between pure states
ρz = |z〉〈z| and ρ0 = |0〉〈0|, where the coherent state basis

|z〉 = e−b̂z̄+b̂
†z|0〉 with z = x1+ix2√

2θ
are the eigen states of b̂, to

get

dDM
(ρz, ρ0) =

√
2θ|z|



Double Moyal plane
Double Moyal plane is the (tensor) product space of Moyal
plane and the two point space. By “doublying procedure”,
it’s spectral triple is obtained as

At = AM ⊗A2 = Hq ⊗ C2 ; Ht = HM ⊗H2 = (Hc ⊗ C2)⊗ C2

Dt = DM ⊗ 1+ γ ⊗D2

where γ = σ3 for Moyal plane. It turns out that the Dirac
eigen spinors are the natural basis for distance calculation,
and for Moyal plane they are given by

|0〉〉 :=

(
|0〉
0

)
, |m〉〉± :=

1√
2

(
|m〉

± |m− 1〉

)
; m = 1, 2, 3, · · ·

They furnish furnish a complete and orthonormal basis for
HM and the corresponding eigenvalues λm are,

λ0 = 0 ; λ±m = ±
√

2m

θ



Double Moyal plane
Taking hint from the Moyal plane, we construct following
eigen spinors (for m = 0) for the Dirac operator Dt, with

eigen values λ
(m)
± = ±|Λ|

√
κm+ 1:∣∣Ψ(m)

±
〉

= Nm

[
V

(m)
++ + V

(m)
−− ± V

(m)
−+

(√
κm+ 1∓

√
κm
)

∓V (m)
+−

(√
κm+ 1±

√
κm
) ]

; κ =
2

θΛ2∣∣Ψ̃(m)
±
〉

= Nm

[
V

(m)
+− + V

(m)
−+ ± V

(m)
++

(√
κm+ 1±

√
κm
)

∓V (m)
−−

(√
κm+ 1∓

√
κm
) ]
,

where the basis elements are given by

V
(m)
±± =

(
|m〉

± |m− 1〉

)
⊗
(

1
±1

)
,

and the normalization factor Nm = 1√
mκ+1



Distances on double Moyal plane
For m = 0 we obtain following eigen spinors

∣∣Ψ(0)
±
〉

=
1√
2

(
|0〉
0

)
⊗
(

1
±1

)
(12)

There are three different kinds of distances in double Moyal
plane as shown in following figure. Here pure states are
given by φ = ρz ⊗ ωi ; i = 1, 2

P ′, φ′

P, φ Q, φ̃

dt dh

dl

Σ2

Σ1

Figure: M ∪M , Space associated with doubly spectral triple.



Transverse distance
Here we consider states Ω

(1)
z = |z〉〈z| ⊗ ω1 on Moyal plane

Σ1 and it’s clone Ω
(2)
z = |z〉〈z| ⊗ ω2 on Moyal plane Σ2. On

top of this, we work with an algebra element at = 1Hq ⊗ a2

(a2 ∈ A2) with representation

π(at) =

(
1Hq 0

0 1Hq

)
⊗
(
c1 0
0 c2

)
. (13)

Then the distance formula (11) becomes

dt
(
Ω(1)
z ,Ω(2)

z

)
= sup

at∈BT

|TrM (dΩzat)| = sup
at∈BT

|c1 − c2| (14)

With this choice the Lipschitz ball condition turns out to
be |Λ(c1 − c2)| ≤ 1, producing the distance on two point
space i.e.

dt
(
Ω(1)
z ,Ω(2)

z

)
=

1

|Λ|
(15)



Transverse distance

However, the Moyal plane algebra is non-unital i.e.
1Hq 6∈ AM = Hq. To get around this problem we consider
finite order projection operator PN on Ht constructed using
the Dirac eigen spinors. Upon calculation this projection
operator splits as

PN =

(
PN 0
0 PN−1

)
⊗
(

1 0
0 1

)
, (16)

where PN := |0〉 〈0|+ |1〉 〈1|+ ...+ |N〉 〈N | are the N-th
order projection operator in Hc. So instead of working with
1Hq , we choose to work with PN and PN−1 as diagonal
entries in the left slot of π(at). The form of the distance
(15) remains valid as we keep on increasing the order of
projection from N = 2 onwards.



Longitudinal distance
Here we compute distance between states Ω

(i)
dz = ρdz ⊗ ωi

and Ω
(i)
0 = ρ0 ⊗ ωi. Using a general algebra element

al = a⊗ a2 (a ∈ AM) and after little manipulation we
obtain

dl

(
Ω

(i)
dz ,Ω

(i)
0

)
= sup

al∈BT

|ci| · |ρdz(a)− ρ0(a)| (17)

Also the total ball condition becomes

[DT , π(aT )] = [DM , π(a)]⊗ a2 + a(c1 − c2)σ3 ⊗D2 (18)

By symmetry argument we demand |c1| = |c2| or c1 = ±c2

(ci ∈ R). The condition c1 = c2 renders the total ball
condition to be same as that of Moyal plane alone
producing

dl

(
Ω

(i)
dz ,Ω

(i)
0

)
=
√

2θ|dz| (19)



Hypotenuse distance

Also by using al =
(
b+ b†

)
⊗ a2 ∈ At, inspired by our

previous work (see [2]), we verified that the case of
c1 = −c2 produces a distance which is lower than (19) and
thus we discard this case.
For hypotenuse case we work with states
Ω

(1)
dz = |dz〉〈dz| ⊗ ω1 and Ω

(2)
0 = ρ0 ⊗ ω2 and the algebra

element ah = at + al with representation

π(ah) =

(
PN 0
0 PN−1

)
⊗
(
c1 0
0 c2

)
+

((
b+ b†

)
0

0
(
b+ b†

))⊗(α 0
0 α

)
This turns argument of supremum in (11) into

dh

(
Ω

(1)
dz ,Ω

(2)
0

)
= sup

a
(h)
S ∈BT

∣∣2|dz|α + (c1 − c2)
∣∣ (20)



Hypotenuse distance
To get the ball condition we use the matrix representation
of [DT ,PNπ(ah)PN ] in Dirac eigen spinor basis (starting
from N = 1) and employ C∗ algebra identity to get

Λ
√
κX2 + Y 2 ≤ 1 ∀κ ∈ Z+ (21)

Surprisingly enough Mathematica could produce such
simple result only for integer values of κ suggesting some
quantization is taking place. After solving this optimization
problem we obtain following Pythagoras equality proved
earlier by Martinetti et. al. (see [3])

dh

(
Ω

(1)
dz ,Ω

(2)
0

)
=

√
2θ|dz|2 +

1

|Λ|2
(22)

=

√(
d
(

Ω
(i)
dz ,Ω

(i)
0

))2

+
(
dt

(
Ω

(1)
z ,Ω

(2)
z

))2



Summary and future goals
• Takeaway

I A nice symmetric form of the Dirac eigen spinors for
double Moyal plane has been obtained.

I Three kinds of distances viz. transverse, longitudinal
and hypotenuse has been computed verifying the
Pythagoras theorem.

I Some kind of quantization of the dimensionless
quantity κ = 2

θ|Λ|2 is taking place.

• What lies ahead...

I Tackle the problem of ‘time’ in NCG by formulating
it’s Lorentzian version and study the issue of causality.

I As a long term goal, we would like to put guage fields
on such NC spaces and quantize them, starting from
U(1) field.
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