Spectral distances on double Moyal plane

Kaushlendra Kumar

Department of Theoretical Physics
S. N. Bose National Centre for Basic Sciences, Kolkata

$$
\text { July 7, } 2017
$$

Summer Research Program - 2017

Table of contents

- Motivation
- Moyal plane: Hilbert-Schmidt formalism
- Connes spectral distance
- Two point space
- Moyal plane
- Double Moyal plane
- Transverse distance
- Longitudinal distance
- Hypotenuse distance
- Summary and future scope
- Acknowledgement

Why non-commutative spaces?

- In 1999, Witten along with Sieberg demostrated that in certain low energy regime of string theory, non-commutativity of Moyal type crops up.
- Non-commutative geometry (NCG) as developed by Alain Connes has been successfully applied to many problems of physical interest like quantum Hall effect, Zitterbewegung and is a promising candidate for quantum gravity.
- Connes alongwith others have been successful in reformulating standard model based on NCG through "almost-commutative" manifold and has provided a remarkable geometrical interpretation for the Higgs field.

Moyal plane: Hilbert-Schmidt formalism

We begin with the non-commutative algebra

$$
\begin{equation*}
\left[\hat{x}_{\alpha}, \hat{x}_{\beta}\right]=i \theta_{\alpha \beta}=i \theta \epsilon_{\alpha \beta} ; \alpha, \beta \in\{1,2\} \tag{1}
\end{equation*}
$$

which along with

$$
\begin{equation*}
\left[\hat{x}_{\alpha}, \hat{p}_{\beta}\right]=i \hbar \delta_{\alpha \beta} \quad ; \quad\left[\hat{p}_{\alpha}, \hat{p}_{\beta}\right]=0 \tag{2}
\end{equation*}
$$

gives the modified Hiesenberg algebra. This renders the configuration space "fuzzy" due to the uncertainty relation:

$$
\begin{equation*}
\left(\Delta x_{1}\right)\left(\Delta x_{2}\right) \geq \frac{\theta}{2} \tag{3}
\end{equation*}
$$

Now one can define following ladder operators

$$
\begin{equation*}
\hat{b}=\frac{1}{\sqrt{2 \theta}}\left(\hat{x}_{1}+i \hat{x}_{2}\right) ; \hat{b}^{\dagger}=\frac{1}{\sqrt{2 \theta}}\left(\hat{x}_{1}-i \hat{x}_{2}\right) \tag{4}
\end{equation*}
$$

satisfying $\left[\hat{b}, \hat{b}^{\dagger}\right]=1$ and $\hat{b}|0\rangle=0$.

Moyal plane: Hilbert-Schmidt formalism

One can then naturally associate a Hilbert space \mathcal{H}_{c} to the coordiate algebra (1), which is isomorphic to the Hilbert space of 1D qunatum mechanical SHO.

$$
\begin{equation*}
\mathcal{H}_{c}=\operatorname{span}\left\{|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{b}^{\dagger}\right)^{n}|0\rangle\right\}_{n=0}^{\infty} \tag{5}
\end{equation*}
$$

This replaces the 2D configuration space of commutative QM. The quantum Hilbert space \mathcal{H}_{q} then comes automatically by considering the set of Hilbert-Schmidt operators on \mathcal{H}_{c} (which again forms a Hilbert space) as

$$
\begin{equation*}
\mathcal{H}_{q}=\left\{\psi: \psi \in \mathcal{B}\left(\mathcal{H}_{c}\right), \operatorname{Tr}_{c}\left(\psi^{\dagger} \psi\right)<\infty\right\} \tag{6}
\end{equation*}
$$

Also the associated inner product (and thus norm) can easily be defined by

$$
\begin{equation*}
(\phi \mid \psi)=\operatorname{Tr}_{c}\left(\phi^{\dagger} \psi\right) \tag{7}
\end{equation*}
$$

Moyal plane: Hilbert-Schmidt formalism

The next step is to look for a unitary representation \hat{X}_{i} and \hat{P}_{i} of position \hat{x}_{i} and canonical momenta \hat{p}_{i} respectively. It turns out that, following representation does the job.

$$
\begin{equation*}
\hat{X}_{i} \psi=\hat{x}_{i} \psi, \quad \hat{P}_{i} \psi=\frac{1}{\theta} \epsilon_{i j}\left[\hat{x}_{j}, \psi\right]=\frac{1}{\theta} \epsilon_{i j}\left(\hat{X}_{j}^{L}-\hat{X}_{j}^{R}\right) \psi \tag{8}
\end{equation*}
$$

Here the left/right action for any $\psi \in \mathcal{H}_{q}$ is defined as

$$
\hat{X}_{i}^{L} \psi \equiv \hat{X}_{i} \psi=\hat{x}_{i} \psi ; \hat{X}_{i}^{R} \psi=\psi \hat{x}_{i}: \forall \psi=\sum_{m, n=0}^{\infty} C_{m n}|m\rangle\langle n|
$$

These operators respect the modified Heisengberg algebra i.e.

$$
\begin{equation*}
\left[\hat{X}_{i}^{L}, \hat{X}_{j}^{L}\right] \equiv\left[\hat{X}_{i}, \hat{X}_{j}\right]=i \theta \epsilon_{i j} ;\left[\hat{X}_{i}, \hat{P}_{j}\right]=i \delta_{i j} ;\left[\hat{P}_{i}, \hat{P}_{j}\right]=0 \tag{9}
\end{equation*}
$$

Using this prescription one can work out various QM problem in this space (e.g. see [1])

Connes spectral distance

How to study the geometry of such NC spaces where the notion of points, lines etc. breaks down?
NCG provides a way out a set of data called "spectral triple" $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, which encodes the geometrical information of generalized spaces.

- \mathcal{H} : The Hilbert space.
- \mathcal{A} : An involutive C^{*} algebra (satisfying $\left\|a^{*} a\right\|=\left\|a a^{*}\right\|=\|a\|^{2}$), with some faithful representation (π) as bounded operators on \mathcal{H}.
- \mathcal{D} : A self-adjoint operator on \mathcal{H} called generalized Dirac operator.

The primary motivation for such a construction came from the celebrated theorem by Gelfand and Naimark which establishes duality between (resp. catagories of) C^{*} Algebra and Topological spaces.

Connes spectral distance

The role of Dirac operator is to define the neccessary differential structure on the manofold while the link between algebra \mathcal{A} and Hilbert space \mathcal{H} is provided by following isometric embedding

$$
\begin{equation*}
\pi(\mathcal{A}) \hookrightarrow \mathcal{B}(\mathcal{H}) \tag{10}
\end{equation*}
$$

Then, one defines States ω as positive linear functionals of norm 1 over \mathcal{A}. These are the analogue of points in usual commutative geometry. Distance between any two states $\left(\omega, \omega^{\prime}\right)$ are given by

$$
\begin{array}{r}
d\left(\omega, \omega^{\prime}\right)=\sup _{a \in B}\left|\omega(a)-\omega^{\prime}(a)\right|, \\
B=\left\{a \in \mathcal{A}:\|[\mathcal{D}, \pi(a)]\|_{o p} \leq 1\right\}, \tag{11}\\
\|\mathcal{O}\|_{o p}=\sup _{\phi \in \mathcal{H}} \frac{\|\mathcal{O} \phi\|}{\|\phi\|}
\end{array}
$$

Spectral distance: Two point space

It's an abstract space of two c-numbers with spectral triple $\left(\mathcal{A}_{2}=\mathbb{C}^{2}, \mathcal{H}_{2}=\mathbb{C}^{2}, \mathcal{D}_{2}=\left(\begin{array}{cc}0 & \Lambda \\ \Lambda & 0\end{array}\right)\right)$ where Λ is a constant complex parameter of length-inverse dimension. Any algebra element can be written in both the canonical basis $\operatorname{Span}\left\{\binom{1}{0},\binom{0}{1}\right\}$, or the 2×2 matrix basis $\operatorname{Span}\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\doteq \omega_{1}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\doteq \omega_{2}\right)\right\}$. After calculation one gets (see [2])

$$
d_{D_{F}}\left(\omega_{1}, \omega_{2}\right)=\frac{1}{\Lambda}
$$

Spectral distance: Moyal plane

Here the spectral triple is $\mathcal{A}_{M}:=\mathcal{H}_{q}, \mathcal{H}_{M}:=\mathcal{H}_{c} \otimes \mathbb{C}^{2}$ and $\mathcal{D}_{M}=\hat{P}_{1} \sigma_{1}+\hat{P}_{2} \sigma_{2}=\sqrt{\frac{2}{\theta}}\left(\begin{array}{cc}0 & b^{\dagger} \\ b & 0\end{array}\right)$
The elements $a \in \mathcal{A}$ acts on the elements $\psi=\binom{\left|\psi_{1}\right\rangle}{\left|\psi_{2}\right\rangle} \in \mathcal{H}$ through diagonal representation $\pi(a)=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$. Then one can calculate the spectral distance between pure states $\rho_{z}=|z\rangle\langle z|$ and $\rho_{0}=|0\rangle\langle 0|$, where the coherent state basis $|z\rangle=e^{-\hat{b} \bar{z}+\hat{b}^{\dagger} z}|0\rangle$ with $z=\frac{x_{1}+x_{2}}{\sqrt{2 \theta}}$ are the eigen states of \hat{b}, to get

$$
d_{D_{M}}\left(\rho_{z}, \rho_{0}\right)=\sqrt{2 \theta}|z|
$$

Double Moyal plane

Double Moyal plane is the (tensor) product space of Moyal plane and the two point space. By "doublying procedure", it's spectral triple is obtained as
$\mathcal{A}_{t}=\mathcal{A}_{M} \otimes \mathcal{A}_{2}=\mathcal{H}_{q} \otimes \mathbb{C}^{2} ; \mathcal{H}_{t}=\mathcal{H}_{M} \otimes \mathcal{H}_{2}=\left(\mathcal{H}_{c} \otimes \mathbb{C}^{2}\right) \otimes \mathbb{C}^{2}$
$\mathcal{D}_{t}=\mathcal{D}_{M} \otimes \mathbb{1}+\gamma \otimes \mathcal{D}_{2}$
where $\gamma=\sigma_{3}$ for Moyal plane. It turns out that the Dirac eigen spinors are the natural basis for distance calculation, and for Moyal plane they are given by

$$
\left.|0\rangle\rangle:=\binom{|0\rangle}{ 0},|m\rangle\right\rangle_{ \pm}:=\frac{1}{\sqrt{2}}\binom{|m\rangle}{ \pm|m-1\rangle} \quad ; \quad m=1,2,3, \cdots
$$

They furnish furnish a complete and orthonormal basis for \mathcal{H}_{M} and the corresponding eigenvalues λ_{m} are,

$$
\lambda_{0}=0 \quad ; \quad \lambda_{m}^{ \pm}= \pm \sqrt{\frac{2 m}{\theta}}
$$

Double Moyal plane

Taking hint from the Moyal plane, we construct following eigen spinors (for $m=0$) for the Dirac operator \mathcal{D}_{t}, with eigen values $\lambda_{ \pm}^{(m)}= \pm|\Lambda| \sqrt{\kappa m+1}$:

$$
\begin{aligned}
\left|\Psi_{ \pm}^{(m)}\right\rangle= & N_{m}\left[V_{++}^{(m)}+V_{--}^{(m)} \pm V_{-+}^{(m)}(\sqrt{\kappa m+1} \mp \sqrt{\kappa m})\right. \\
& \left.\mp V_{+-}^{(m)}(\sqrt{\kappa m+1} \pm \sqrt{\kappa m})\right] ; \kappa=\frac{2}{\theta \Lambda^{2}} \\
\left|\widetilde{\Psi}_{ \pm}^{(m)}\right\rangle= & N_{m}\left[V_{+-}^{(m)}+V_{-+}^{(m)} \pm V_{++}^{(m)}(\sqrt{\kappa m+1} \pm \sqrt{\kappa m})\right. \\
& \left.\mp V_{--}^{(m)}(\sqrt{\kappa m+1} \mp \sqrt{\kappa m})\right]
\end{aligned}
$$

where the basis elements are given by

$$
V_{ \pm \pm}^{(m)}=\binom{|m\rangle}{ \pm|m-1\rangle} \otimes\binom{1}{ \pm 1}
$$

and the normalization factor $N_{m}=\frac{1}{\sqrt{m \kappa+1}}$

Distances on double Moyal plane

For $m=0$ we obtain following eigen spinors

$$
\begin{equation*}
\left|\Psi_{ \pm}^{(0)}\right\rangle=\frac{1}{\sqrt{2}}\binom{|0\rangle}{ 0} \otimes\binom{1}{ \pm 1} \tag{12}
\end{equation*}
$$

There are three different kinds of distances in double Moyal plane as shown in following figure. Here pure states are given by $\phi=\rho_{z} \otimes \omega_{i} ; i=1,2$

Figure: $M \cup M$, Space associated with doubly spectral triple.

Transverse distance

Here we consider states $\Omega_{z}^{(1)}=|z\rangle\langle z| \otimes \omega_{1}$ on Moyal plane Σ_{1} and it's clone $\Omega_{z}^{(2)}=|z\rangle\langle z| \otimes \omega_{2}$ on Moyal plane Σ_{2}. On top of this, we work with an algebra element $a_{t}=\mathbb{1}_{\mathcal{H}_{q}} \otimes a_{2}$ $\left(a_{2} \in \mathcal{A}_{2}\right)$ with representation

$$
\pi\left(a_{t}\right)=\left(\begin{array}{cc}
\mathbb{1}_{\mathcal{H}_{q}} & 0 \tag{13}\\
0 & \mathbb{1}_{\mathcal{H}_{q}}
\end{array}\right) \otimes\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right)
$$

Then the distance formula (11) becomes

$$
\begin{equation*}
d_{t}\left(\Omega_{z}^{(1)}, \Omega_{z}^{(2)}\right)=\sup _{a_{t} \in B_{T}}\left|\operatorname{Tr}_{M}\left(d \Omega_{z} a_{t}\right)\right|=\sup _{a_{t} \in B_{T}}\left|c_{1}-c_{2}\right| \tag{14}
\end{equation*}
$$

With this choice the Lipschitz ball condition turns out to be $\left|\Lambda\left(c_{1}-c_{2}\right)\right| \leq 1$, producing the distance on two point space i.e.

$$
\begin{equation*}
d_{t}\left(\Omega_{z}^{(1)}, \Omega_{z}^{(2)}\right)=\frac{1}{|\Lambda|} \tag{15}
\end{equation*}
$$

Transverse distance

However, the Moyal plane algebra is non-unital i.e. $\mathbb{1}_{\mathcal{H}_{q}} \notin \mathcal{A}_{M}=\mathcal{H}_{q}$. To get around this problem we consider finite order projection operator \mathcal{P}_{N} on \mathcal{H}_{t} constructed using the Dirac eigen spinors. Upon calculation this projection operator splits as

$$
\mathcal{P}_{N}=\left(\begin{array}{cc}
P_{N} & 0 \tag{16}\\
0 & P_{N-1}
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

where $P_{N}:=|0\rangle\langle 0|+|1\rangle\langle 1|+\ldots+|N\rangle\langle N|$ are the N -th order projection operator in \mathcal{H}_{c}. So instead of working with $\mathbb{1}_{\mathcal{H}_{q}}$, we choose to work with P_{N} and P_{N-1} as diagonal entries in the left slot of $\pi\left(a_{t}\right)$. The form of the distance (15) remains valid as we keep on increasing the order of projection from $N=2$ onwards.

Longitudinal distance

Here we compute distance between states $\Omega_{d z}^{(2)}=\rho_{d z} \otimes \omega_{i}$ and $\Omega_{0}^{(i)}=\rho_{0} \otimes \omega_{i}$. Using a general algebra element $a_{l}=a \otimes a_{2}\left(a \in \mathcal{A}_{M}\right)$ and after little manipulation we obtain

$$
\begin{equation*}
d_{l}\left(\Omega_{d z}^{(i)}, \Omega_{0}^{(i)}\right)=\sup _{a_{l} \in B_{T}}\left|c_{i}\right| \cdot\left|\rho_{d z}(a)-\rho_{0}(a)\right| \tag{17}
\end{equation*}
$$

Also the total ball condition becomes

$$
\begin{equation*}
\left[\mathcal{D}_{T}, \pi\left(a_{T}\right)\right]=\left[\mathcal{D}_{M}, \pi(a)\right] \otimes a_{2}+a\left(c_{1}-c_{2}\right) \sigma_{3} \otimes \mathcal{D}_{2} \tag{18}
\end{equation*}
$$

By symmetry argument we demand $\left|c_{1}\right|=\left|c_{2}\right|$ or $c_{1}= \pm c_{2}$ $\left(c_{i} \in \mathbb{R}\right)$. The condition $c_{1}=c_{2}$ renders the total ball condition to be same as that of Moyal plane alone producing

$$
\begin{equation*}
d_{l}\left(\Omega_{d z}^{(i)}, \Omega_{0}^{(i)}\right)=\sqrt{2 \theta}|d z| \tag{19}
\end{equation*}
$$

Hypotenuse distance

Also by using $a_{l}=\left(b+b^{\dagger}\right) \otimes a_{2} \in \mathcal{A}_{t}$, inspired by our previous work (see [2]), we verified that the case of $c_{1}=-c_{2}$ produces a distance which is lower than (19) and thus we discard this case.
For hypotenuse case we work with states
$\Omega_{d z}^{(1)}=|d z\rangle\langle d z| \otimes \omega_{1}$ and $\Omega_{0}^{(2)}=\rho_{0} \otimes \omega_{2}$ and the algebra element $a_{h}=a_{t}+a_{l}$ with representation

$$
\pi\left(a_{h}\right)=\left(\begin{array}{cc}
P_{N} & 0 \\
0 & P_{N-1}
\end{array}\right) \otimes\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right)+\left(\begin{array}{cc}
\left(b+b^{\dagger}\right) & 0 \\
0 & \left(b+b^{\dagger}\right)
\end{array}\right) \otimes\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)
$$

This turns argument of supremum in (11) into

$$
\begin{equation*}
d_{h}\left(\Omega_{d z}^{(1)}, \Omega_{0}^{(2)}\right)=\sup _{a_{S}^{(h)} \in B_{T}}|2| d z\left|\alpha+\left(c_{1}-c_{2}\right)\right| \tag{20}
\end{equation*}
$$

Hypotenuse distance

To get the ball condition we use the matrix representation of $\left[\mathcal{D}_{T}, \mathcal{P}_{N} \pi\left(a_{h}\right) \mathcal{P}_{N}\right]$ in Dirac eigen spinor basis (starting from $N=1$) and employ C^{*} algebra identity to get

$$
\begin{equation*}
\Lambda \sqrt{\kappa X^{2}+Y^{2}} \leq 1 \quad \forall \kappa \in \mathbb{Z}_{+} \tag{21}
\end{equation*}
$$

Surprisingly enough Mathematica could produce such simple result only for integer values of κ suggesting some quantization is taking place. After solving this optimization problem we obtain following Pythagoras equality proved earlier by Martinetti et. al. (see [3])

$$
\begin{align*}
d_{h}\left(\Omega_{d z}^{(1)}, \Omega_{0}^{(2)}\right) & =\sqrt{2 \theta|d z|^{2}+\frac{1}{|\Lambda|^{2}}} \tag{22}\\
& =\sqrt{\left(d\left(\Omega_{d z}^{(i)}, \Omega_{0}^{(i)}\right)\right)^{2}+\left(d_{t}\left(\Omega_{z}^{(1)}, \Omega_{z}^{(2)}\right)\right)^{2}}
\end{align*}
$$

Summary and future goals

- Takeaway
- A nice symmetric form of the Dirac eigen spinors for double Moyal plane has been obtained.
- Three kinds of distances viz. transverse, longitudinal and hypotenuse has been computed verifying the Pythagoras theorem.
- Some kind of quantization of the dimensionless quantity $\kappa=\frac{2}{\theta|\Lambda|^{2}}$ is taking place.
- What lies ahead...
- Tackle the problem of 'time' in NCG by formulating it's Lorentzian version and study the issue of causality.
- As a long term goal, we would like to put guage fields on such NC spaces and quantize them, starting from $\mathrm{U}(1)$ field.

References

目 Kaushlendra Kumar, Shivraj Prajapat, Biswajit Chakraborty EPJ Plus (2015) 130: 120
© Yendrembam C. Devi, Alpesh Patil, Aritra N. Bose, Kaushlendra Kumar, Biswajit Chakraborty, Frederich G. Scholtz Arxiv:1608.05270v1

嗇 Pierre Martinetti, Luca Tomassini Commun. Math. Phys. (2013) 323 107-141

Acknowledgement

1. Prof. Biswajit Chakraborty, S. N. Bose Center, Kolkata.
2. Dr. Sunandan Gangopadhyay, IISER-Kolkata.
3. Aritra Narayan Bose, S. N. Bose Center, Kolkata.
4. Dr. Yendrembam Chaoba Devi, Institute of Mathematical Sciences, Chennai.

Thank You!

