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Overview

@ Geometry
e Lightcone interior foliated with H3 = SO(1,3)/S0(3)

@ Lightcone exterior foliated with dS; = SO(1,3)/S0(1,2)

© Lie algebra
@ Interior of the lightcone

@ Exterior of the lightcone

© Yang-Mills fields
@ Yang—Mills fields via equivariant reduction
@ On the lightcone interior
@ On the lightcone exterior

@ Summary and outlook
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Lightcone interior foliated with H3 = SO(1, 3)/S0(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/5S0(1, 2)

The 2-sheeted hyperboloid H3 with
radius ¢ can be embedded in Minkowski
space RY3 in the metric

N = diag(—, +, 4+, +)uv as

N YPYY =~ v =0,1,2,3. (1)

We choose to make our coordinates on
the hyperbola Y* € Hg’ and inside the
lightcone X* € T dimensionless using
the global length scale ¢:

Y# XH
y”::T, & xt:=— . (2)

-10
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Lightcone interior foliated with H3 = SO(1, 3)/S0(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/5S0(1, 2)

The interior of the lightcone T can be foliated with
unit-hyperboloids H3 := ngl using the following maps:

o RxH> =T, (uy") e’ y" = xt

o
ToRxHP, xio <|n I X)

/_77,LLVX#XV
(3)
with e = \/=n,,xFx”. Convention: xX0=t, xl=x,x°=y, x3=z.
The metric on 7 becomes conformal to that of a Lorentzian
cylinder R x H3:
2 2 2
ds? Y (—du® 4+ dsgs) - (4)
Canonical rotation (J,) and boost (Kj,) generators of SO(1,3)
1000 0000 0000
K1:<0000>> K2:<1ooo>v K3:<oooo>v
0000 0000 1000 (5)
00080 0003 0030
Jl:(ooo 1>’ J2:<oooo>a J3:<01_00>'
0010 0-100 0000
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Lightcone interior foliated with H3 = SO(1, 3)/S0(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/5S0(1, 2)

@ A given timelike vector V; on the
hyperbola can be brought to the
vector Vo = (1,0,0,0)7 via a
boost A;.

@ The vector V; is uniquely
associated with a coset A; SO(3)
due to the fact that its stabilizer is
nothing but A; SO(3) At

sSOo.,3)
i @ The hyperbola H3 is the curve o,
SO parameterised by y, that passes
through every coset once.
\ mee® o Alternatively, H3 is the orbit under
the adjoint action of the Lorentz
\ Tt group SO(1,3) on the coset space.
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Lightcone interior foliated with H3 = SO(1, 3)/S0(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/5S0(1, 2)

The 2-sheeted unit hyperboloid H3 can be realized as the coset
space G/H with G = SO(1,3) and H = SO(3) using the following

maps
oy SO(1,3)/SO(3) — H> |, [A] = Ao, = y* (©)
ot H? = 50(1,3)/S0(3), y" — [N]
where
Ar = (7;T ]l_i_(,yfy_ﬂl)ﬁgé ) (7)
and ;
g = Y — #. (8)

<

0 Y= -
V1- 32

Notice that the generic expression of the boost Ay (7) can be
obtained by exponentiation with boost generators Kj:

AN =exp(n.Ks) ; Bi= i tanh /7?2 . (9)
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Lightcone interior foliated with H3 = SO(1, 3)/50(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

The exterior of the lightcone S can be foliated with de Sitter space
dSs3 of radius ¢ obeying

N YPYY = 2. (10)
We again work with dimensionless coordinates e.g. y* := Y* /(.
To see the foliation explicitly we note down the following maps

0s: RxdS3 =S, (u,y!)m—e"yl = xt

"
<p:§1 : S—>RxdS3, xt— <In \/nwx#x”,\/mjxiuxl) ,
(11)
where e = /1, x#x”. The metric of S under this map becomes
conformal to a Euclidean cylinder R x dSs:

ds? = e®¥ (du® + dsls,) (12)

where ds§53 is the metric on dS3 induced from (10), and the

parameter u is spatial.
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Lightcone interior foliated with H3 = SO(1, 3)/50(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

For the coset SO(1,3)/S0(1,2) associated with the base vector
(0,0,0,1), the splitting (20) is realized by

I, € {Jl,JQ, K3} and [; € {Kl, KQ,J3} . (13)
The following map illustrate the equivalence between dS3; and
50(1,3)/50(1,2)
s SO(1,3)/50(1,2) = dSs, [A] = Aoy =: y*

ol dSs — SO(1,3)/50(1,2) , y* — [As] .

S

[e%

(14)

where the representative element Ag is defined as follows

2
1+ -Dg —G-D% -D% b
2
(-0 1-(-Dg (-DEFE
(v — 128 1828 1 (v 1 8 _
(7 ) B2 (’Y ) B2 (7 )32 637
Bry —Bay B3y v

As =



Lightcone interior foliated with H3 = SO(1, 3)/50(3)
Lightcone exterior foliated with dS3 = SO(1, 3)/S0(1, 2)

with

3 ﬂ2 = _nabﬁaﬂb y V= \/11_7 (16)

Notice the presence of the 3-dimensional Minkowski metric

Nap = diag(1,1, —1),p due to the fact that the stabilizer SO(1,2)
here is nothing but the isometry group of R12.

One can also obtain Ags, analogous to the previous case (9), by
exponentiating the coset generators /; € m with parameters x;:

/\5 = eXp(fil_/l + Kol + /€3K3) (17)
and employing the following identification

Ba = \’/‘%tan VK2 K =nPkanp . (18)
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Interior of the lightcone
Exterior of the lightcone

For reductive coset spaces G/H the Lie algebra g = Lie(G) with
structure constants f,;°:

[l ls] = fisClc with AB,C = 1.6,  (19)

admits the following splitting into a Lie subalgebra h and an
orthogonal complement m such that [h, m] C m:

g = hom = {L} = {[}U{lL}witha=1,2,3and /= 4,5,6.
(20)

In effect, we get the following splitting of the Lie algebra

i, ] = £, [l = £,21 and [l ly] = £ L+,
(21)

where f,, ¢ = 0 for the symmetric spaces. The Cartan—Killing

metric is given by

8as = _trad(lA IB) = fADC fCBD . (22)
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Interior of the lightcone
Exterior of the lightcone

The Maurer—Cartan one-forms are given by
g ldg = &1, for geG, (23)

which can be pulled back to the coset space G/H using any local
section 0 : G/H D U — G satisfying m o 0 = Idy to obtain

e’ =%t . (24)
These one-forms split into

{e"} = {e}u{e}, (25)

where e’ = e/ e? are linearly dependent on the three e? in terms of
some real functions e). These one-forms satisfy the following
structure equations consistent with (21):

de?+f,2e ne? = 0, dei—s—%)j-kiej/\ek—i—%ﬁgbiea/\eb =0.
(26)
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Interior of the lightcone
Exterior of the lightcone

For the coset SO(1,3)/SO(3) we have /; = J; and I, = K, such

that
fX = eizjsk3, fy = cizap and f,7 = —c,pi 3.
(27)
The Cartan—Killing metric, in this case, splits as follows:
gj = 46i3j-3, g = —40,, and g, = 0. (28)
Moreover, the Maurer—Cartan one-forms A}ld/\T = e, + e'l; are
given by
a, b a
= (o0 LY Vb, e =cigm-L —dyt. (29
( y0(1+y0) Yy, Ej 3ab1+y0 y ( )

Notice that e := du & e? provides, locally, an orthonormal-frame
on the cotangent bundle T*(U C R x H3):

ds?, = —du? +dsZs = —® @ & + 6pe? @ e . (30)

They are pulled back to Minkowski space R via ¢.- (3).
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Interior of the lightcone
Exterior of the lightcone

For the Lie algebra (13) of SO(1,3)/SO(1,2) we have

fi* =ci—3j-3k-3(1-26k), £’ =ci325(1-20a3), fop’ =€api-3,
(31)

where the indices for the terms inside the bracket are not summed

over. These structure coefficients produce the following

Cartan—Killing metric (22)

-100

100
--:4(0—10) , =4<010> » & = 0. (32
8ij 0 01/i3j3 &ab 00-1/2p 8ia ( )

The Maurer—Cartan one-forms /\g1 dA\s = e? I, + €' I; are
3—a 3—a
. 1.3— y 3 P ) y 3—b
ea_dy 3_1+y3dy , e’—_5173ab1_’_y3dy s (33)

that give rise to the following metric on the cylinder R x dS3 (12)

g =0 +npe?el. (34)
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

We shall consider our Yang-Mills theory on the Lorentzian cylinder
R x G/H and the solution obtained therein would be transported
back to Minkowski space owing to conformal invariance of the
theory in 4D.

For the gauge group G a generic connection one-form A in
“temporal” gauge Ay = 0 is written as

A=eli+e? X, , (35)
which after imposing G-invariance! leads to
[, Xa] = " Xb . (36)

Furthermore, for the symmetric spaces obeying [m, m] C b like H3
and dS3 the G-invariance makes X, proportional to /5:

A=el;+¢(u)e I, . (37)

!D. Kapetanakis & G. Zoupanos, Phys. Rept. 219 (1992) 1.
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

The field strength 7 = d.A + A A A for the above connection A
takes the following form (¢ := 9,¢)

. 1 )
]-":qﬁlaeo/\ea+§(qﬁ2—l)fab’l,-ea/\eb. (38)

The Yang—Mills action simplifies to that of a mechanical ‘particle’
moving in a Newtonian potential V/(¢) for both cases:

1
Sym = —2/ tl"ad(]:/\ *JT")
2e% JRxH3/ds;
12 1. 1
== dvol 2—V¢>>;V =—2(¢?—1)%,
2 oo, ™ (39 V) £ Vo) = 56~ 1)
(39)
which has the following equation of motion
¢ = 2¢(¢°-1). (40)
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

This equation admits a generic solution ®e,uo(u) characterized by
its energy € = %(bz + V(¢) and by a shift parameter ug in terms of
the Jacobi sine function

Geup(U) = f,(e)sn(ﬂr(e)(ufuo),k) (41)

with

f(e) = J1evoae, w2 = =0 (42)
fi(€)

Special cases, including the “kink”, of ¢ ,,(u) are as follows:

0, e:—%
¢ = (tanh(u— w), e=0 (43)
F1, e=0; u — o0
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

It is a straightforward exercise to pull the orthonormal-frame on
R x H3 back to T with the map ¢ (3) to get (r = VX2)

tdt — rdr
0 .__ _
e =du = —JH5
44
o dx? x2 (\/ t2—l’2—t) dr x2 dt ( )
IR (2 - 1) 22

which yields the veirbein components eozeg dx* & e?=e; dx".
The colour electric E; := Fy; and magnetic B; := 5,Jk Fk fields
comes out to be

_ 1 k=3, b x? xb ab
Ea_—(t2—r2)3/2[€3 /+<r (VeE=r o)+ 5 )b
1 X3 xS i-3 b
B, = (22 [( 7 (\/t2 —-r’- t) + to? > li — e x /C]

(45)

17/22



Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

The stress-energy tensor on the cylinder R x H3 has the form

1
T = _fﬁtr<fuafuwaﬁ—%nuvf2) T = P P
(46)
and computes to
6
T = —g—s (®® e+ jfwe’) = Tcyll“ = 77“”Tl‘g1 =0.
(47)

Pulling T back to the lightcone interior 7 using the vierbein
components {eg, e;} yields a remarkably simple result:

3t% 4 r? —4tx —4ty —4tz
T = ¢ —4tx 2 +4x% —r? 4xy 4xz
—4ty 4xy t? 4 4y2 —r? 4yz
—A4tz 4xz 4yz t2 + 422 —r?
(48)
with Cr = —ﬁ and vanishing trace, as expected.
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

Again, the local orthonormal-frame on R x dS3 can be pulled back
to the exterior of lightcone S via the map ¢, (11) to obtain

e = du= [‘27—1_'2 s
5 dy3—a y3—a dy3

e? = —
1/r2 _ t2 r2 _ t2+y3 r2 _ t2 (49)

B <1 B y3 > y3fa e0 '
V2 —t2 48 2 _ 2
This yields the veirbein components
e = eg dx and e = ejdx" (50)
on the lightcone exterior S.
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Yang—Mills fields via equivariant reduction
On the lightcone interior
On the lightcone exterior

As before, we compute the stress-energy tensor on the cylinder
R x dS3 to get

2
T = ——5 (@ —e'we' —320e® +e*®e?) , (51)
g
which is traceless:
1 ~ 1
Ty =g"Ty = 0. (52)
Here again, we use the vierbein components {eg7 ey} to pull Tyl
back to S:
3t2 4+ r? —4tx —4ty —4tz
—4tx 2+ 4x% —r? 4xy 4xz
T =20Gs 2 2 2
—4ty 4xy t° 4+ 4y —r 4yz
—4tz 4xz 4yz t> + 422 —r?
(53)
with Cs = —ﬁ. This is again traceless, as required.
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Summary a

@ We have obtained new YM solutions on the interior resp.
exterior of lightcone using the Lorentz group SO(1,3) and
stabilizer subgroup SO(3) resp. SO(1,2).

@ One has the coset SO(1,3)/ISO(2) for the null hypersurface,
but there is no foliation and hence no dynamics.

@ Yang—Mills dynamics can be explored on other
related /unrelated coset spaces like SO(2,2)/50(1,2) and
G2/SU(3) in future works.
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