ANGULAR MOMENTUM AND SIMPLE HARMONIC OSCILLATOR PROBLEMS IN 2D NON-COMMUTATIVE MOYAL PLANE

Kaushlendra Kumar

Indian Institute of Science Education \& Research, Kolkata

November 4, 2016

Indian Institute of Science Education \& Research, Kolkata

Why non-commutative spaces?

- Localization of an event in space-time with arbitrary accuracy is operationally impossible (Doplicher et. al.)

Why non-commutative spaces?

- Localization of an event in space-time with arbitrary accuracy is operationally impossible (Doplicher et. al.)
- Quantization of space time is a way out and can also help gain insight into the Plank scale nature of spacetime.

Why non-commutative spaces?

- Localization of an event in space-time with arbitrary accuracy is operationally impossible (Doplicher et. al.)
- Quantization of space time is a way out and can also help gain insight into the Plank scale nature of spacetime.
- Low energy regime of String theory also gives rise to such non-commuting spaces.

Why non-commutative spaces?

- Localization of an event in space-time with arbitrary accuracy is operationally impossible (Doplicher et. al.)
- Quantization of space time is a way out and can also help gain insight into the Plank scale nature of spacetime.
- Low energy regime of String theory also gives rise to such non-commuting spaces.
- has relevance in certain condensed matter phenomena like the quantum Hall effect and topological insulators.

Simplest "toy" model: Moyal plane

$$
\begin{equation*}
\left[\hat{x}_{\alpha}, \hat{x}_{\beta}\right]=i \theta_{\alpha \beta}=i \theta \epsilon_{\alpha \beta} \quad(\alpha, \beta \in\{1,2\}) \tag{1}
\end{equation*}
$$

which augments the usual Heisenberg algebra:

$$
\begin{equation*}
\left[\hat{x}_{\alpha}, \hat{p}_{\beta}\right]=i \hbar \delta_{\alpha \beta} ; \quad\left[\hat{p}_{\alpha}, \hat{p}_{\beta}\right]=0 \tag{2}
\end{equation*}
$$

This algebra renders the configuration space being "fuzzy" due to the uncertainty relation:

$$
\begin{equation*}
\left(\Delta x_{1}\right)\left(\Delta x_{2}\right) \geq \frac{\theta}{2} \tag{3}
\end{equation*}
$$

One can at best talk about the so called "coherent" states |z) which saturates the above inequality.

Simplest "toy" model: Moyal plane

One can naturally associate a Hilbert space \mathcal{H}_{c} to the coordiate algebra (1), which is isomorphic to the Hilbert space of 1D qunatum mechanical SHO.

$$
\begin{equation*}
\mathcal{H}_{c}=\operatorname{span}\left\{|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{b}^{\dagger}\right)^{n}|0\rangle\right\}_{n=0}^{\infty} \tag{4}
\end{equation*}
$$

where the annihilation operator \hat{b} is given by:

$$
\begin{equation*}
\hat{b}=\frac{1}{\sqrt{2 \theta}}\left(\hat{x}_{1}+i \hat{x}_{2}\right) \tag{5}
\end{equation*}
$$

satisfying $\left[\hat{b}, \hat{b}^{\dagger}\right]=1$ and $\hat{b}|0\rangle=0$. This Hilbert space replaces the 2D configuration space of commutative quantum mechanics.

Simplest "toy" model: Moyal plane

The quantum Hilbert space \mathcal{H}_{q} then comes naturally as the set of bounded trace class operators on \mathcal{H}_{c} as:

$$
\begin{equation*}
\left.\mathcal{H}_{q}=\{\mid \psi), \operatorname{Tr}_{c}\left(\psi^{\dagger} \psi\right)<\infty\right\} \tag{6}
\end{equation*}
$$

Also the associated inner product (and thus norm) can easily be defined as:

$$
\begin{equation*}
(\phi \mid \psi)=\operatorname{Tr}_{c}\left(\phi^{\dagger} \psi\right) \tag{7}
\end{equation*}
$$

Now we look for the unitary representation of \hat{x}_{α} (which unlike in the usual QM are not c-numbers anymore) and their conjugate momenta. Calling them \hat{X}_{i} and \hat{P}_{i} one can verify that following representation does the job:

$$
\begin{equation*}
\hat{X}_{i} \psi=\hat{x}_{i} \psi, \quad \hat{P}_{i} \psi=\frac{1}{\theta} \epsilon_{i j}\left[\hat{x}_{j}, \psi\right]=\frac{1}{\theta} \epsilon_{i j}\left(\hat{X}_{j}^{L}-\hat{X}_{j}^{R}\right) \psi \tag{8}
\end{equation*}
$$

Simplest "toy" model: Moyal plane

Here the left/right action (for all $\psi \in \mathcal{H}_{q}$) is defined as

$$
\begin{equation*}
\hat{X}_{i}^{\llcorner } \psi \equiv \hat{X}_{i} \psi=\hat{x}_{i} \psi ; \quad \hat{X}_{i}^{R} \psi=\psi \hat{x}_{i} \tag{9}
\end{equation*}
$$

Such that these operators \hat{X}_{i} and \hat{P}_{i} satisfies the non-commutative Heisengberg algebra

$$
\begin{equation*}
\left[\hat{X}_{i}^{L}, \hat{X}_{j}^{\llcorner }\right] \equiv\left[\hat{X}_{i}, \hat{X}_{j}\right]=i \theta \epsilon_{i j} ;\left[\hat{X}_{i}, \hat{P}_{j}\right]=i \delta_{i j} ;\left[\hat{P}_{i}, \hat{P}_{j}\right]=0 \tag{10}
\end{equation*}
$$

It's also easy to see that

$$
\begin{equation*}
\left[\hat{X}_{i}^{R}, \hat{X}_{j}^{R}\right]=-i \theta \epsilon_{i j} ;\left[\hat{X}_{i}^{L}, \hat{X}_{j}^{R}\right]=0 \tag{11}
\end{equation*}
$$

Angular Momentum: Schwinger's way

Using creation ($\hat{a}_{\alpha}^{\dagger}$) and annihilation (\hat{a}_{α}) operators of a pair of independent harmonic oscillators satisfying:

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0=\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right] \text { and }\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} \forall \alpha, \beta=1,2 \tag{12}
\end{equation*}
$$

One can obtain general angular momentum operators using Pauli matrices as

$$
\begin{equation*}
\hat{\vec{J}}=\frac{1}{2} \hat{a}_{\alpha}^{\dagger}\{\vec{\sigma}\}_{\alpha \beta} \hat{a}_{\beta} ;\left[\hat{\jmath}_{i}, \hat{\jmath}_{j}\right]=i \epsilon_{i j k} \hat{\jmath}_{k}, \tag{13}
\end{equation*}
$$

In commutative case we can study decoupled 1D SHO as $|m\rangle\langle n| \in \mathcal{H}_{c} \otimes \mathcal{H}_{c}$ with creation operators $\hat{a}_{1}^{\dagger}, \hat{a}_{2}^{\dagger}$ as $\left(\hat{a}^{\dagger} \otimes 1\right)$ and ($1 \otimes \hat{a}^{\dagger}$) respectively.

Angular Momentum: Commutative case

With above Schwinger's prescription we can easily obtain following $\operatorname{SU}(2)$ generators
$\hat{J}_{1}=\frac{1}{2}\left(\hat{a}_{2}^{\dagger} \hat{a}_{1}+\hat{a}_{1}^{\dagger} \hat{a}_{2}\right), \hat{\jmath}_{2}=\frac{i}{2}\left(\hat{a}_{2}^{\dagger} \hat{a}_{1}-\hat{a}_{1}^{\dagger} \hat{a}_{2}\right), \hat{\jmath}_{3}=\frac{1}{2}\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}-\hat{a}_{2}^{\dagger} \hat{a}_{2}\right)$
in which \hat{J}_{3} and the Casimir $\hat{\vec{J}}^{2}$ operators satisfy following eigen-value equations:

$$
\begin{aligned}
\hat{J}_{3}(|m\rangle \otimes|n\rangle) & =j_{3}(|m\rangle \otimes|n\rangle), \quad \text { where } j_{3}=\frac{1}{2}(m-n) \\
\hat{\vec{J}}^{2}(|m\rangle \otimes|n\rangle) & =j(j+1)(|m\rangle \otimes|n\rangle), \quad \text { where } j=\frac{1}{2}(m+n)
\end{aligned}
$$

Angular Momentum: Commutative case

Now considering following Hamiltonian

$$
\hat{H}=\frac{1}{2} \mu \omega^{2}\left(\hat{X}_{1}^{2}+\hat{X}_{2}^{2}\right)+\frac{1}{2 \mu}\left(\hat{P}_{1}^{2}+\hat{P}_{2}^{2}\right)=\frac{\omega}{2}\left(\frac{\hat{\vec{P}}^{2}}{\mu \omega}+\mu \omega \hat{\vec{X}}^{2}\right)
$$

which under following canonical transformation

$$
\begin{equation*}
\hat{P}_{\alpha} \rightarrow \hat{p}_{\alpha}=\frac{\hat{P}_{\alpha}}{\sqrt{\mu \omega}} \text { and } \hat{X}_{\alpha} \rightarrow \hat{X}_{\alpha}=\sqrt{\mu \omega} \hat{X}_{\alpha} \tag{14}
\end{equation*}
$$

becomes $\hat{H}=\frac{\omega}{2}\left(\hat{x}_{1}^{2}+\hat{x}_{2}^{2}+\hat{p}_{1}^{2}+\hat{p}_{2}^{2}\right)$ which seems to enjoy full $S O(4)$ symmetry in 4D phase-space. However it's only the subgroup $S U(2) \subset S O(4)=S U(2) \otimes S U(2)$ is the relevant symmetry group.

Angular Momentum: Commutative case

Now using the previous form of generators \hat{J}_{i} in terms of ladder operators and following relations

$$
\begin{equation*}
\hat{x}_{\alpha}=\frac{1}{\sqrt{2}}\left(\hat{a}_{\alpha}+\hat{a}_{\alpha}^{\dagger}\right) ; \quad \text { and }, \quad \hat{p}_{\alpha}=\frac{i}{\sqrt{2}}\left(\hat{a}_{\alpha}^{\dagger}-\hat{a}_{\alpha}\right) ; \tag{15}
\end{equation*}
$$

one can easily obtain following commutation relations

$$
\begin{aligned}
& {\left[\hat{\jmath}_{3}, \hat{x}_{\alpha}\right]=\frac{i}{2}\left(\delta_{\alpha 2} \hat{p}_{2}-\delta_{\alpha 1} \hat{p}_{1}\right) \text { and }\left[\hat{\jmath}_{3}, \hat{p}_{\alpha}\right]=\frac{i}{2}\left(\delta_{\alpha 1} \hat{x}_{1}-\delta_{\alpha 2} \hat{x}_{2}\right)} \\
& {\left[\hat{\jmath}_{1}, \hat{x}_{\alpha}\right]=\frac{-i}{2}\left(\delta_{\alpha 1} \hat{p}_{2}+\delta_{\alpha 2} \hat{p}_{1}\right) \text { and }\left[\hat{\jmath}_{1}, \hat{p}_{\alpha}\right]=\frac{i}{2}\left(\delta_{\alpha 1} \hat{x}_{2}+\delta_{\alpha 2} \hat{x}_{1}\right)} \\
& {\left[\hat{\jmath}_{2}, \hat{x}_{\alpha}\right]=\frac{i}{2} \epsilon_{\alpha \beta} \hat{x}_{\beta} \text { and }\left[\hat{\jmath}_{2}, \hat{p}_{\alpha}\right]=\frac{i}{2} \epsilon_{\alpha \beta} \hat{p}_{\alpha} ; \text { with } \alpha, \beta=1,2 .}
\end{aligned}
$$

Angular Momentum: Commutative case

Above commutation relation clearly shows that \hat{J} 's generate simultaneous $\mathrm{SO}(2)$ rotations in two orthogonal planes like \hat{J}_{3} generates simultaneous $\mathrm{SO}(2)$ rotation in $x_{1} p_{1}$ and $x_{2} p_{2}$ planes and so on.
Now any general state in \mathcal{H}_{q} can be written as

$$
\begin{equation*}
|\Psi\rangle=\sum_{m, n} C_{m n}|m\rangle\langle n| \in \mathcal{H}_{q} \tag{16}
\end{equation*}
$$

Thus \mathcal{H}_{q} can be identified with $\mathcal{H}_{c} \otimes \tilde{\mathcal{H}}_{c}$, where $\tilde{\mathcal{H}}_{c}$ is the dual of \mathcal{H}_{c}. Since, there is a one-to-one map between the basis $|m\rangle \otimes|n\rangle$ and $|m\rangle \otimes\langle n|$, the Hilbert spaces, $\operatorname{span}\{|m\rangle \otimes|n\rangle\}=\mathcal{H}_{c} \otimes \mathcal{H}_{c}$ and \mathcal{H}_{q} are isomorphic.

Angular Momentum: non-commutative

 caseNow replacing \hat{a}_{1} with \hat{B}_{L} and \hat{a}_{2}^{\prime} (and not \hat{a}_{2}) with \hat{B}_{R} in the commutative case where operators $\hat{B}_{L}=\hat{b} \otimes 1$ and $\hat{B}_{R}=1 \otimes \hat{b}_{R}$ belong to \mathcal{H}_{q} we obtain

$$
\begin{gather*}
\hat{J}_{1}=\frac{1}{2}\left(\hat{B}_{R} \hat{B}_{L}+\hat{B}_{L}^{\ddagger} \hat{B}_{R}^{\ddagger}\right), \quad \hat{J}_{2}=\frac{i}{2}\left(\hat{B}_{R} \hat{B}_{L}-\hat{B}_{L}^{\ddagger} \hat{B}_{R}^{\ddagger}\right) \text { and } \\
\hat{\jmath}_{3}=\frac{1}{2}\left(\hat{B}_{L}^{\ddagger} \hat{B}_{L}-\hat{B}_{R} \hat{B}_{R}^{\ddagger}\right) \tag{17}
\end{gather*}
$$

It's an easy job to check that the \hat{J}_{3} and Casimir operator \hat{J}^{2} satisfies the same eigen value equation as in the commutative case. We can use the definition $\hat{B}_{L / R}=\frac{1}{\sqrt{2 \theta}}\left(\hat{X}_{1}^{L / R}+i \hat{X}_{2}^{L / R}\right)$ and its Hermitian conjugate, and the adjoint action of momenta we get

Angular Momentum: non-commutative

 case$$
\begin{gathered}
\hat{X}_{1}^{L}=\sqrt{\frac{\theta}{2}}\left(\hat{B}_{L}+\hat{B}_{L}^{\ddagger}\right), \hat{X}_{2}^{L}=i \sqrt{\frac{\theta}{2}}\left(\hat{B}_{L}^{\ddagger}-\hat{B}_{L}\right) \\
\hat{P}_{1}=\frac{i}{\sqrt{2 \theta}}\left(\hat{B}_{L}^{\ddagger}-\hat{B}_{L}-\hat{B}_{R}^{\ddagger}+\hat{B}_{R}\right) \\
\hat{P}_{2}=\frac{1}{\sqrt{2 \theta}}\left(\hat{B}_{R}^{\ddagger}+\hat{B}_{R}-\hat{B}_{L}^{\ddagger}-\hat{B}_{L}\right)
\end{gathered}
$$

Further, the commuting coordinates introduced as

$$
\hat{X}_{i}^{c}=\frac{1}{2}\left(\hat{X}_{i}^{L}+\hat{X}_{i}^{R}\right)=\hat{X}_{i}+\frac{\theta}{2} \epsilon_{i j} \hat{P}_{j}
$$

satisfying $\left[\hat{X}_{i}^{c}, \hat{X}_{j}^{c}\right]=0$, can be expressed like-wise as:

Angular Momentum: non-commutative

 case$$
\begin{aligned}
& \hat{X}_{1}^{c}=\frac{1}{2} \sqrt{\frac{\theta}{2}}\left(\hat{B}_{R}+\hat{B}_{L}+\hat{B}_{L}^{\ddagger}+\hat{B}_{R}^{\ddagger}\right) \\
& \hat{X}_{2}^{c}=\frac{i}{2} \sqrt{\frac{\theta}{2}}\left(\hat{B}_{L}^{\ddagger}-\hat{B}_{L}+\hat{B}_{R}^{\ddagger}-\hat{B}_{R}\right)
\end{aligned}
$$

We now perform canonical transformation similar to the commutative case

$$
\hat{X}_{i}^{c} \rightarrow \hat{x}_{i}^{c}=\frac{\hat{X}_{i}^{c}}{\sqrt{\theta}} \text { and } \hat{P}_{i} \rightarrow \hat{p}_{i}=\sqrt{\theta} \hat{P}_{i} \quad \forall i=1,2
$$

We then calculate following commutation relation

$$
\left[\hat{x}_{i}^{c}, \hat{J}_{1}\right]=\frac{i}{2}\left(\delta_{i 1} \hat{p}_{1}^{\prime}-\delta_{i 2} \hat{p}_{2}^{\prime}\right) \quad \text { and }\left[\hat{p}_{i}^{\prime}, \hat{J}_{1}\right]=\frac{i}{2}\left(\delta_{i 2} \hat{x}_{2}-\delta_{i 1} \hat{x}_{1}\right)
$$

Angular Momentum: non-commutative

case

$$
\begin{gathered}
{\left[\hat{x}_{i}^{c}, \hat{y}_{2}\right]=-\frac{i}{2}\left(\delta_{i 1} \hat{p}_{2}^{\prime}+\delta_{i 2} \hat{p}_{1}^{\prime}\right) \text { and }\left[\hat{p}_{i}^{\prime}, \hat{\jmath}_{2}\right]=\frac{i}{2}\left(\delta_{i 1} \hat{x}_{2}+\delta_{i 2} \hat{x}_{1}\right)} \\
{\left[\hat{x}_{i}^{c}, \hat{\jmath}_{3}\right]=\frac{i}{2} \epsilon_{i j} \hat{x}_{j} \text { and }\left[\hat{p}_{i}^{\prime}, \hat{y}_{3}\right]=\frac{i}{2} \epsilon_{i j} \hat{p}_{j}^{\prime}}
\end{gathered}
$$

where $\hat{p}_{i}^{\prime}=\frac{\hat{p}_{i}}{2}$. This shows that the Angular momentum operators generates simultaneous $\mathrm{SO}(2)$ rotations in orthogonal planes (not the phase-space!) here as well but the roles of these operators are different then their commutative counterpart

$$
\hat{\jmath}_{1}^{N C} \leftrightarrow \hat{\jmath}_{3}^{C}, \quad \hat{\jmath}_{2}^{N C} \leftrightarrow \hat{\jmath}_{1}^{C} \quad \text { and } \quad \hat{\jmath}_{3}^{N C} \leftrightarrow \hat{\jmath}_{2}^{C}
$$

SHO: commutative case

Here the Hamiltonian is given by

$$
\begin{equation*}
\hat{H}_{l}=\frac{1}{2} \mu \omega^{2} \hat{\vec{X}}^{2}+\frac{1}{2 \mu} \hat{\vec{P}}^{2} \tag{18}
\end{equation*}
$$

which with the substitution in terms of ladder operators using

$$
\begin{aligned}
& \hat{\vec{X}}^{2}=\frac{1}{2 \mu \omega}\left(\hat{a}_{1} \hat{a}_{1}+\hat{a}_{1}^{\dagger} \hat{a}_{1}^{\dagger}+\hat{a}_{2} \hat{a}_{2}+\hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger}\right)+\frac{1}{\mu \omega}\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}+\hat{a}_{2}^{\dagger} \hat{a}_{2}+1\right) \\
& \hat{\vec{P}}^{2}=-\frac{\mu \omega}{2}\left(\hat{a}_{1} \hat{a}_{1}+\hat{a}_{1}^{\dagger} \hat{a}_{1}^{\dagger}+\hat{a}_{2} \hat{a}_{2}+\hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger}\right)+\mu \omega\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}+\hat{a}_{2}^{\dagger} \hat{a}_{2}+1\right),
\end{aligned}
$$

so that we get $\operatorname{SU}(2)$ invariant Hamiltonian

$$
\hat{H}_{l}=\omega\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+1\right)
$$

whose spectrum is just $\hat{H}_{l}|m\rangle \otimes|n\rangle=\omega(2 j+1)|m\rangle \otimes|n\rangle$ where $j=\frac{1}{2}(m+n)$ as expected.

SHO: non-commutative case

Let's first study the unphysical SHO (involving \hat{X}_{i}^{c}). The Hamiltonian is

$$
\begin{equation*}
\hat{H}_{2}=\frac{1}{2 \mu} \hat{\vec{P}}^{2}+\frac{1}{2} \mu \omega^{2}\left(\hat{\vec{X}}^{c}\right)^{2} \tag{19}
\end{equation*}
$$

We might naively expect this to be similar to commutative case, which is not completely true. Let's construct the ladder operators here

$$
\begin{equation*}
\hat{C}_{i}^{\dagger}=\frac{1}{\sqrt{2 \mu \omega}}\left(\mu \omega \hat{X}_{i}^{c}-i \hat{P}_{i}\right), \quad \hat{C}_{i}=\frac{1}{\sqrt{2 \mu \omega}}\left(\mu \omega \hat{X}_{i}^{c}+i \hat{P}_{i}\right) \forall i=1 \tag{20}
\end{equation*}
$$

The corresponding ground state $\mid \Omega) \in \mathcal{H}_{q}$ is then defined as $\left.\hat{C}_{i} \mid \Omega\right)=0$. Note that there is another "Vacuum" state $|0\rangle\langle 0|$ satisfying $\hat{B}_{L}|0\rangle\langle 0|=0=\hat{B}_{R}^{\ddagger}|0\rangle\langle 0|$.

SHO: non-commutative case

These two matches only under a special choice of parameters μ and ω, which we call as a critical point:

$$
\begin{equation*}
\mu_{0}=\frac{\omega_{0}}{2}=\frac{1}{\sqrt{\theta}} \tag{21}
\end{equation*}
$$

At this critical point our Hamiltonian \hat{H}_{2} becomes

$$
\hat{H}_{2}=\omega_{0}\left(\frac{1}{\theta}\left(\hat{\vec{X}}^{c}\right)^{2}+\frac{\theta}{4} \hat{\vec{P}}^{2}\right)=\omega_{0}\left(\hat{B}_{L}^{\ddagger} \hat{B}_{L}+\hat{B}_{R} \hat{B}_{R}^{\ddagger}+1\right)
$$

which reproduces the spectrum of commutative case i.e.
$E=\omega_{0}(2 j+1)$.

SHO: non-commutative case

Now for arbitrary values of parameters μ and ω Hamiltonian takes the form

$$
\begin{equation*}
\hat{H}_{2}=\alpha\left(\hat{B}_{L}^{\ddagger} \hat{B}_{L}+\hat{B}_{R}^{\ddagger} \hat{B}_{R}\right)+\beta\left(\hat{B}_{L}^{\ddagger} \hat{B}_{R}+\hat{B}_{R}^{\ddagger} \hat{B}_{L}\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\mu \omega^{2} \theta}{4}+\frac{1}{\mu \theta} \text { and } \beta=\frac{\mu \omega^{2} \theta}{4}-\frac{1}{\mu \theta} \tag{23}
\end{equation*}
$$

To diagonalize the Hamiltonian we perform following
Bogoliubov transformation

$$
\binom{\hat{B}_{L}^{\prime}}{\hat{B}_{R}^{\prime}}=\left(\begin{array}{cc}
\cosh \phi & \sinh \phi \tag{24}\\
\sinh \phi & \cosh \phi
\end{array}\right)\binom{\hat{B}_{L}}{\hat{B}_{R}}
$$

This ensures $\left[\hat{B}_{L}^{\prime}, \hat{B}_{L}^{\prime \dagger}\right]=-\left[\hat{B}_{R}^{\prime}, \hat{B}_{R}^{\prime \ddagger}\right]=1$. So that we get

SHO: non-commutative case

$$
\begin{aligned}
\hat{H}_{2}= & {\left[\alpha\left(\cosh ^{2} \phi+\sinh ^{2} \phi\right)-2 \beta \sinh \phi \cosh \phi\right]\left(\hat{B}_{L}^{\prime \ddagger} \hat{B}_{L}^{\prime}+\hat{B}_{R}^{\prime} \hat{B}_{R}^{\prime \ddagger}\right) } \\
& +\left[\beta\left(\cosh ^{2} \phi+\sinh ^{2} \phi\right)-2 \alpha \sinh \phi \cosh \phi\right]\left(\hat{B}_{L}^{\ddagger} \hat{B}_{R}^{\prime}+\hat{B}_{R}^{\prime \ddagger} \hat{B}_{L}^{\prime}\right) \\
& +2 \alpha \sinh ^{2} \phi-2 \beta \sinh \phi \cosh \phi+\alpha
\end{aligned}
$$

Setting the coefficient of the off-diagonal term to zero we get

$$
\begin{equation*}
\operatorname{coth} \phi+\tanh \phi=\frac{2 \alpha}{\beta} \tag{25}
\end{equation*}
$$

which gives two roots with the smaller one being $\tanh \phi=\frac{1}{\beta}(\alpha-\omega)$. Also the Hamiltonian becomes (with this solution)

$$
\begin{equation*}
\hat{H}_{2}=\omega\left(B_{L}^{\not \ddagger} B_{L}^{\prime}+B_{R}^{\prime} B_{R}^{\not \ddagger}+1\right) \tag{26}
\end{equation*}
$$

SHO: non-commutative case

This again reproduces the spectrum of commutative case with arbitrary parameter ω (rather than ω_{0}). Also note that the Bogoliubov transformation used above is actually equivalent to following canonical transformation

$$
\begin{equation*}
\hat{X}_{i}^{\prime c}=e^{\phi} \hat{X}_{i}^{c} ; \quad \hat{P}_{i}^{\prime}=e^{-\phi} \hat{P}_{i} \tag{27}
\end{equation*}
$$

where $e^{\phi}=\sqrt{\frac{\mu \omega \theta}{2}}$ for the particular solution we have choosen. This transformation is in turn equivalent to following unitary transformation

$$
\begin{equation*}
\hat{X}_{i}^{\prime}=e^{\phi} \hat{X}_{i}^{c}=e^{-\frac{i}{2} \phi \hat{D}} \hat{X}_{i}^{c} e^{\frac{i}{2} \phi \hat{D}} \tag{28}
\end{equation*}
$$

where $\hat{D}=\frac{1}{2}\left(\hat{X}_{i}^{c} \hat{P}_{i}+\hat{P}_{i} \hat{X}_{i}^{c}\right)=i\left(\hat{B}_{L}^{\ddagger} \hat{B}_{R}-\hat{B}_{L} \hat{B}_{R}^{\ddagger}\right)$ is the dilatation operator.

SHO: non-commutative case

Now as for the physical Hamiltonian for SHO in non-commutative case we have

$$
\begin{equation*}
\hat{H}_{3}=\frac{1}{2 \mu} \hat{\vec{P}}^{2}+\frac{1}{2} \mu \omega^{2}(\hat{\vec{X}})^{2} \tag{29}
\end{equation*}
$$

Re-writing \hat{H}_{3} in terms of \hat{X}_{i}^{c}, by eliminating \hat{X}_{i} we obtain

$$
\begin{equation*}
\hat{H}_{3}=\frac{1}{2 \mu} \hat{\vec{P}}^{2}+\frac{1}{2} \mu \omega^{2}\left[\left(\hat{\vec{X}}^{c}\right)^{2}+\frac{\theta^{2}}{4} \hat{\vec{P}}^{2}+2 \theta \hat{J}_{3}\right] . \tag{30}
\end{equation*}
$$

which after re-organizing can be written as

$$
\begin{equation*}
\hat{H}_{3}=\frac{1}{2 \mu^{\prime}} \hat{\vec{P}}^{2}+\frac{1}{2} \mu^{\prime} \omega^{\prime 2}\left(\hat{\vec{X}}^{c}\right)^{2}+\mu \theta \omega^{2} \hat{\jmath}_{3} \tag{31}
\end{equation*}
$$

SHO: non-commutative case

where the renormalized paramters μ^{\prime} and ω^{\prime}, satisfying $\mu \omega^{2}=\mu^{\prime} \omega^{\prime 2}$, are given by:

$$
\frac{1}{\mu^{\prime}}=\frac{1}{\mu}+\frac{\mu \omega^{2} \theta^{2}}{4} \text { and } \omega^{\prime 2}=\omega^{2}\left(1+\frac{\mu^{2} \omega^{2} \theta^{2}}{4}\right)
$$

Now the extra Zeeman term in the Hamiltonian breaks the $S U(2)$ symmetry to $U(1)$ symmetry. The spectrum can easily be read off using previous excercise unphysical SHO

$$
\begin{equation*}
E\left(j, j_{3}\right)=\omega^{\prime}(2 j+1)+\theta \mu^{\prime} \omega^{\prime 2} j_{3} \tag{32}
\end{equation*}
$$

This clearly suggests that these renormalised parameters ω^{\prime} and μ^{\prime} rather than their 'bare' counterparts ω and μ, which are the observable quantities of the theory.

Missed out stuff and current interest

- time-reversal symmetry breaking due to Zeeman term
- analogy with squeezed coherent state (Eur. Phys. J. Plus (2015) 130: 120)
- I'm currently involved in studying the geometry of such non-commutative spaces using the Connes spectral triple formalism.

Thank You!

