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Why non-commutative spaces?

Localization of an event in space-time with arbitrary
accuracy is operationally impossible (Doplicher et. al.)

Quantization of space time is a way out and can also help
gain insight into the Plank scale nature of spacetime.

Low energy regime of String theory also gives rise to such
non-commuting spaces.

has relevance in certain condensed matter phenomena like
the quantum Hall effect and topological insulators.
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Simplest “toy” model: Moyal plane

[x̂α, x̂β] = iθαβ = iθεαβ (α, β ∈ {1, 2}) (1)

which augments the usual Heisenberg algebra:

[x̂α, p̂β] = i~δαβ ; [p̂α, p̂β] = 0 (2)

This algebra renders the configuration space being “fuzzy” due
to the uncertainty relation:

(∆x1)(∆x2) ≥ θ

2
(3)

One can at best talk about the so called “coherent” states |z)
which saturates the above inequality.
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Simplest “toy” model: Moyal plane
One can naturally associate a Hilbert space Hc to the
coordiate algebra (1), which is isomorphic to the Hilbert space
of 1D qunatum mechanical SHO.

Hc = span{|n〉 =
1√
n!

(b̂†)n |0〉}∞n=0 (4)

where the annihilation operator b̂ is given by:

b̂ =
1√
2θ

(x̂1 + i x̂2) (5)

satisfying [b̂, b̂†] = 1 and b̂ |0〉 = 0. This Hilbert space
replaces the 2D configuration space of commutative quantum
mechanics.
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Simplest “toy” model: Moyal plane
The quantum Hilbert space Hq then comes naturally as the
set of bounded trace class operators on Hc as:

Hq = {|ψ),Trc(ψ†ψ) <∞}. (6)

Also the associated inner product (and thus norm) can easily
be defined as:

(φ|ψ) = Trc(φ†ψ) (7)

Now we look for the unitary representation of x̂α (which unlike
in the usual QM are not c-numbers anymore) and their
conjugate momenta. Calling them X̂i and P̂i one can verify
that following representation does the job:

X̂iψ = x̂iψ, P̂iψ =
1

θ
εij [x̂j , ψ] =

1

θ
εij

(
X̂ L
j − X̂R

j

)
ψ, (8)
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Simplest “toy” model: Moyal plane

Here the left/right action (for all ψ ∈ Hq) is defined as

X̂ L
i ψ ≡ X̂iψ = x̂iψ ; X̂R

i ψ = ψx̂i (9)

Such that these operators X̂i and P̂i satisfies the
non-commutative Heisengberg algebra

[X̂ L
i , X̂

L
j ] ≡ [X̂i , X̂j ] = iθεij ; [X̂i , P̂j ] = iδij ; [P̂i , P̂j ] = 0 (10)

It’s also easy to see that

[X̂R
i , X̂

R
j ] = −iθεij ; [X̂ L

i , X̂
R
j ] = 0 (11)
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Angular Momentum: Schwinger’s way

Using creation (â†α) and annihilation (âα) operators of a pair of
independent harmonic oscillators satisfying:

[âα, âβ] = 0 = [â†α, â
†
β] and [âα, â

†
β] = δαβ ∀α, β = 1, 2 (12)

One can obtain general angular momentum operators using
Pauli matrices as

~̂J =
1

2
â†α{~σ}αβ âβ ; [Ĵi , Ĵj ] = iεijk Ĵk , (13)

In commutative case we can study decoupled 1D SHO as
|m〉〈n| ∈ Hc ⊗Hc with creation operators â†1, â†2 as (â† ⊗ 1)
and (1⊗ â†) respectively.
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Angular Momentum: Commutative case
With above Schwinger’s prescription we can easily obtain
following SU(2) generators

Ĵ1 =
1

2

(
â†2â1 + â†1â2

)
, Ĵ2 =

i

2

(
â†2â1 − â†1â2

)
, Ĵ3 =

1

2

(
â†1â1 − â†2â2

)
in which Ĵ3 and the Casimir ~̂J2 operators satisfy following
eigen-value equations:

Ĵ3
(∣∣m〉⊗ ∣∣n〉) = j3

(∣∣m〉⊗ ∣∣n〉), where j3 =
1

2
(m − n)

~̂J2
(∣∣m〉⊗ ∣∣n〉) = j(j + 1)

(∣∣m〉⊗ ∣∣n〉), where j =
1

2
(m + n)
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Angular Momentum: Commutative case
Now considering following Hamiltonian

Ĥ =
1

2
µω2

(
X̂ 2
1 + X̂ 2

2

)
+

1

2µ

(
P̂2
1 + P̂2

2

)
=
ω

2

(
~̂P2

µω
+ µω~̂X 2

)

which under following canonical transformation

P̂α → p̂α =
P̂α√
µω

and X̂α → x̂α =
√
µωX̂α (14)

becomes Ĥ = ω
2

(x̂21 + x̂22 + p̂21 + p̂22) which seems to enjoy full
SO(4) symmetry in 4D phase-space. However it’s only the
subgroup SU(2) ⊂ SO(4) = SU(2)⊗ SU(2) is the relevant
symmetry group.
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Angular Momentum: Commutative case
Now using the previous form of generators Ĵi in terms of
ladder operators and following relations

x̂α =
1√
2

(
âα + â†α

)
; and , p̂α =

i√
2

(
â†α − âα

)
; (15)

one can easily obtain following commutation relations

[Ĵ3, x̂α] =
i

2
(δα2p̂2 − δα1p̂1) and [Ĵ3, p̂α] =

i

2
(δα1x̂1 − δα2x̂2)

[Ĵ1, x̂α] =
−i
2

(δα1p̂2 + δα2p̂1) and [Ĵ1, p̂α] =
i

2
(δα1x̂2 + δα2x̂1)

[Ĵ2, x̂α] =
i

2
εαβ x̂β and [Ĵ2, p̂α] =

i

2
εαβ p̂α; with α, β = 1, 2.
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Angular Momentum: Commutative case

Above commutation relation clearly shows that Ĵ ′s generate
simultaneous SO(2) rotations in two orthogonal planes like Ĵ3
generates simultaneous SO(2) rotation in x1p1 and x2p2 planes
and so on.
Now any general state in Hq can be written as∣∣Ψ) =

∑
m,n

Cmn|m〉〈n| ∈ Hq (16)

Thus Hq can be identified with Hc ⊗ H̃c , where H̃c is the
dual of Hc . Since, there is a one-to-one map between the
basis |m〉 ⊗ |n〉 and |m〉 ⊗ 〈n|, the Hilbert spaces,
span{|m〉 ⊗ |n〉}=Hc ⊗Hc and Hq are isomorphic.
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Angular Momentum: non-commutative
case

Now replacing â1 with B̂L and â†2(and not â2) with B̂R in the
commutative case where operators B̂L = b̂ ⊗ 1 and
B̂R = 1⊗ b̂R belong to Hq we obtain

Ĵ1 =
1

2

(
B̂RB̂L + B̂‡LB̂

‡
R

)
, Ĵ2 =

i

2

(
B̂RB̂L − B̂‡LB̂

‡
R

)
and

Ĵ3 =
1

2

(
B̂‡LB̂L − B̂RB̂

‡
R

)
(17)

It’s an easy job to check that the Ĵ3 and Casimir operator Ĵ2

satisfies the same eigen value equation as in the commutative
case. We can use the definition B̂L/R = 1√

2θ
(X̂

L/R
1 + i X̂

L/R
2 )

and its Hermitian conjugate, and the adjoint action of
momenta we get
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Angular Momentum: non-commutative
case

X̂ L
1 =

√
θ

2
(B̂L + B̂‡L) , X̂ L

2 = i

√
θ

2
(B̂‡L − B̂L)

P̂1 =
i√
2θ

(
B̂‡L − B̂L − B̂‡R + B̂R

)
P̂2 =

1√
2θ

(
B̂‡R + B̂R − B̂‡L − B̂L

)
Further, the commuting coordinates introduced as

X̂ c
i =

1

2

(
X̂ L
i + X̂R

i

)
= X̂i +

θ

2
εij P̂j

satisfying [X̂ c
i , X̂

c
j ] = 0, can be expressed like-wise as:
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Angular Momentum: non-commutative
case

X̂ c
1 =

1

2

√
θ

2

(
B̂R + B̂L + B̂‡L + B̂‡R

)
X̂ c
2 =

i

2

√
θ

2

(
B̂‡L − B̂L + B̂‡R − B̂R

)
We now perform canonical transformation similar to the
commutative case

X̂ c
i → x̂ci =

X̂ c
i√
θ

and P̂i → p̂i =
√
θP̂i ∀ i = 1, 2

We then calculate following commutation relation

[x̂ci , Ĵ1] =
i

2
(δi1p̂

′
1 − δi2p̂′2) and [p̂′i , Ĵ1] =

i

2
(δi2x̂2 − δi1x̂1)
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Angular Momentum: non-commutative
case

[x̂ci , Ĵ2] = − i

2
(δi1p̂

′
2 + δi2p̂

′
1) and [p̂′i , Ĵ2] =

i

2
(δi1x̂2 + δi2x̂1)

[x̂ci , Ĵ3] =
i

2
εij x̂j and [p̂′i , Ĵ3] =

i

2
εij p̂
′
j

where p̂′i = p̂i
2

. This shows that the Angular momentum
operators generates simultaneous SO(2) rotations in
orthogonal planes (not the phase-space!) here as well but the
roles of these operators are different then their commutative
counterpart

ĴNC
1 ↔ ĴC

3 , ĴNC
2 ↔ ĴC

1 and ĴNC
3 ↔ ĴC

2
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SHO: commutative case
Here the Hamiltonian is given by

ĤI =
1

2
µω2 ~̂X 2 +

1

2µ
~̂P2 (18)

which with the substitution in terms of ladder operators using

~̂X 2 =
1

2µω

(
â1â1 + â†1â

†
1 + â2â2 + â†2â

†
2

)
+

1

µω

(
â†1â1 + â†2â2 + 1

)
~̂P2 = −µω

2

(
â1â1 + â†1â

†
1 + â2â2 + â†2â

†
2

)
+ µω

(
â†1â1 + â†2â2 + 1

)
,

so that we get SU(2) invariant Hamiltonian

ĤI = ω
(
a†1a1 + a†2a2 + 1

)
,

whose spectrum is just ĤI |m〉 ⊗ |n〉 = ω(2j + 1) |m〉 ⊗ |n〉
where j = 1

2
(m + n) as expected.
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SHO: non-commutative case
Let’s first study the unphysical SHO (involving X̂ c

i ). The
Hamiltonian is

Ĥ2 =
1

2µ
~̂P2 +

1

2
µω2(~̂X c)2 (19)

We might naively expect this to be similar to commutative
case, which is not completely true. Let’s construct the ladder
operators here

Ĉ †i =
1√
2µω

(
µωX̂ c

i − i P̂i

)
, Ĉi =

1√
2µω

(
µωX̂ c

i + i P̂i

)
∀ i = 1, 2,

(20)
The corresponding ground state |Ω) ∈ Hq is then defined as

Ĉi |Ω) = 0. Note that there is another “Vacuum” state |0〉〈0|
satisfying B̂L|0〉〈0| = 0 = B̂‡R |0〉〈0|.
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SHO: non-commutative case

These two matches only under a special choice of parameters
µ and ω, which we call as a critical point:

µ0 =
ω0

2
=

1√
θ

(21)

At this critical point our Hamiltonian Ĥ2 becomes

Ĥ2 = ω0

(
1

θ
(~̂X c)2 +

θ

4
~̂P2

)
= ω0

(
B̂‡LB̂L + B̂RB̂

‡
R + 1

)
,

which reproduces the spectrum of commutative case i.e.
E = ω0(2j + 1).
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SHO: non-commutative case
Now for arbitrary values of parameters µ and ω Hamiltonian
takes the form

Ĥ2 = α
(
B̂‡LB̂L + B̂‡RB̂R

)
+ β

(
B̂‡LB̂R + B̂‡RB̂L

)
(22)

where

α =
µω2θ

4
+

1

µθ
and β =

µω2θ

4
− 1

µθ
(23)

To diagonalize the Hamiltonian we perform following
Bogoliubov transformation(

B̂ ′L
B̂ ′R

)
=

(
coshφ sinhφ
sinhφ coshφ

)(
B̂L

B̂R

)
(24)

This ensures [B̂ ′L, B̂
′‡
L ] = −[B̂ ′R , B̂

′‡
R ] = 1. So that we get
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SHO: non-commutative case

Ĥ2 =
[
α
(
cosh2 φ + sinh2 φ

)
− 2β sinhφ coshφ

] (
B̂ ′‡L B̂

′
L + B̂ ′RB̂

′‡
R

)
+
[
β
(
cosh2 φ + sinh2 φ

)
− 2α sinhφ coshφ

] (
B̂ ′‡L B̂

′
R + B̂ ′‡R B̂

′
L

)
+ 2α sinh2 φ− 2β sinhφ coshφ + α

Setting the coefficient of the off-diagonal term to zero we get

cothφ + tanhφ =
2α

β
(25)

which gives two roots with the smaller one being
tanhφ = 1

β
(α− ω). Also the Hamiltonian becomes (with this

solution)

Ĥ2 = ω
(
B ′‡L B

′
L + B ′RB

′‡
R + 1

)
(26)
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SHO: non-commutative case
This again reproduces the spectrum of commutative case with
arbitrary parameter ω (rather than ω0). Also note that the
Bogoliubov transformation used above is actually equivalent to
following canonical transformation

X̂ ′ci = eφX̂ c
i ; P̂ ′i = e−φP̂i (27)

where eφ =
√

µωθ
2

for the particular solution we have choosen.

This transformation is in turn equivalent to following unitary
transformation

X̂ ′
c

i = eφX̂ c
i = e−

i
2
φD̂X̂ c

i e
i
2
φD̂ , (28)

where D̂ = 1
2
(X̂ c

i P̂i + P̂i X̂
c
i ) = i(B̂‡LB̂R − B̂LB̂

‡
R) is the

dilatation operator.
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SHO: non-commutative case
Now as for the physical Hamiltonian for SHO in
non-commutative case we have

Ĥ3 =
1

2µ
~̂P2 +

1

2
µω2(~̂X )2 (29)

Re-writing Ĥ3 in terms of X̂ c
i , by eliminating X̂i we obtain

Ĥ3 =
1

2µ
~̂P2 +

1

2
µω2

[
(~̂X c)2 +

θ2

4
~̂P2 + 2θĴ3

]
. (30)

which after re-organizing can be written as

Ĥ3 =
1

2µ′
~̂P2 +

1

2
µ′ω′2(~̂X c)2 + µθω2Ĵ3, (31)
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SHO: non-commutative case
where the renormalized paramters µ′ and ω′, satisfying
µω2 = µ′ω′2, are given by:

1

µ′
=

1

µ
+
µω2θ2

4
and ω′2 = ω2

(
1 +

µ2ω2θ2

4

)
Now the extra Zeeman term in the Hamiltonian breaks the
SU(2) symmetry to U(1) symmetry. The spectrum can easily
be read off using previous excercise unphysical SHO

E (j , j3) = ω′(2j + 1) + θµ′ω′
2
j3 (32)

This clearly suggests that these renormalised parameters ω′

and µ′ rather than their ’bare’ counterparts ω and µ, which
are the observable quantities of the theory.
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Missed out stuff and current interest

time-reversal symmetry breaking due to Zeeman term

analogy with squeezed coherent state (Eur. Phys. J. Plus
(2015) 130: 120)

I’m currently involved in studying the geometry of such
non-commutative spaces using the Connes spectral triple
formalism.
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Thank You!
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