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non-commutative spaces?

@ Localization of an event in space-time with arbitrary
accuracy is operationally impossible (Doplicher et. al.)

@ Quantization of space time is a way out and can also help
gain insight into the Plank scale nature of spacetime.

@ Low energy regime of String theory also gives rise to such
non-commuting spaces.

@ has relevance in certain condensed matter phenomena like
the quantum Hall effect and topological insulators.
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Simplest “toy” model: Moyal plane

R0, %3] = 100 = ifeas  (a, B € {1,2}) (1)

which augments the usual Heisenberg algebra:
[%a; Bs] = ihdap [P, Ps] =0 (2)

This algebra renders the configuration space being “fuzzy” due
to the uncertainty relation:

(AX]_)(AXz) 2

NI D

(3)

One can at best talk about the so called “coherent” states |z)
which saturates the above inequality.
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Simplest “toy” model: Moyal plane

One can naturally associate a Hilbert space H. to the
coordiate algebra (1), which is isomorphic to the Hilbert space
of 1D qunatum mechanical SHO.

He = span{|n) = %(BT)" 012, (4)

where the annihilation operator bis given by:

A 1
b= — (% +i% 5
\/%( 1 2) ( )
satisfying [b, b'] = 1 and 5|0) = 0. This Hilbert space
replaces the 2D configuration space of commutative quantum
mechanics.
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Simplest “toy” model: Moyal plane

The quantum Hilbert space H, then comes naturally as the
set of bounded trace class operators on H, as:

Hq = {[¥), Tre(¥'9) < o0} (6)
Also the associated inner product (and thus norm) can easily
be defined as:

(0l4) = Tre(¢') (7)

Now we look for the unitary representation of X, (which unlike
in the usual QM are not c-numbers anymore) and their
conjugate momenta. Calling them X: and P; one can verify
that following representation does the job:

. L1 1 (ol o
Xeo =50, P = zeili. vl = e (R = XF) v, (9)
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Simplest “toy” model: Moyal plane

Here the left/right action (for all ¢ € H,) is defined as
Xfo =X =20 Xfo=v% (9)

Such that these operators )A<,- and I5,- satisfies the
non-commutative Heisengberg algebra

(XF XM = (X, X)) = i0ey ; [Xi, Pl =i6;; [P, P] =0 (10)
It's also easy to see that

[XFXF = —ibey 5 X Xf1=0 (11)
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Angular Momentum: Schwinger’s way

Using creation (4],) and annihilation (4,) operators of a pair of
independent harmonic oscillators satisfying:

40, 85] = 0 =[4],3]] and [4,, 8] = 6up Va,B=1,2 (12)

One can obtain general angular momentum operators using
Pauli matrices as

J= -aa{a}agaﬁ 2 1 J) = eidi, (13)
In commutative case we can study decoupled 1D SHO as

|m)(n| € H. ® H. with creation operators 4!, 4} as (4" ® 1)
and (1 ® ') respectively.
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Angular Momentum: Commutative case

With above Schwinger's prescription we can easily obtain
following SU(2) generators

N U 1 /4. g
h= 5 <a£al + aiaz> J2 > (agal — alaz) J3 5 (aJ{al — azag

in which J; and the Casimir J2 operators satisfy following
eigen-value equations:

B(Im) @ [m) = h(|m) ©[n)),  where js = 5(m )

32(‘m> ® [n)) =+ 1)(|m)® |n)), where j= %(m—kn)
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Angular Momentum: Commutative case

Now considering following Hamiltonian

0l aler o L a AN w [P 3
A = §“w2 (Xl2 + X22> - o (Pf + P22> =5 (M_W - /MX2>

which under following canonical transformation

A

P, — po = —— and X, = %, = \/,uw)A(a (14)

becomes H = £ (2 + %2 + p? + p3) which seems to enjoy full
S0(4) symmetry in 4D phase-space. However it's only the
subgroup SU(2) C SO(4) = SU(2) ® SU(2) is the relevant
symmetry group.
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Angular Momentum: Commutative case

Now using the previous form of generators J; in terms of
ladder operators and following relations

1 N
7 ﬁ(a;—aa),

one can easily obtain following commutation relations

(3o +4l); and, po=

(15)

Ro =

[J5, %] = 5( w2Ps — Oarp1) and [J3, B.] = 5( a1X1 — 0a2%2)

N — R R [ R R
[, %] = = (5a1P2 + da2p1) and [J17 Pa) = 5( a1X2 + 0a2X1)

[Jz,xa]— eaBXB and [Jz,pa] 2eaﬂpa with o, 8=1,2.
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Angular Momentum: Commutative case

Above commutation relation clearly shows that Js generate
simultaneous SO(2) rotations in two orthogonal planes like i
generates simultaneous SO(2) rotation in x;p; and xap, planes
and so on.

Now any general state in H, can be written as

(W) = Conlm)(n| € H, (16)

m,n

Thus H, can be identified with H. ® 7:[C , Where 7:[C is the
dual of H.. Since, there is a one-to-one map between the
basis |m) @ |n) and |m) @ (n|, the Hilbert spaces,
span{|m) ® |n)}=H. ® H. and H, are isomorphic.
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Angular Momentum: non-commutative

case
Now replacing a; with B; and a;(and not a,) with Bg in the
commutative case where operators B, =b®1 and

BR =1® BR belong to H, we obtain

(Bebu+ BiBE). =L (Beby -~ BBL) and

~ 1
J1 == 5

~ 1 /asa A A

h=3 <B§BL - BRB,*?) (17)
It's an easy job to check that the J5 and Casimir operator J?
satisfies the same eigen value equation as in the commutative
case. We can use the definition 5, /g = \/%(XlL/R + inL/R)
and its Hermitian conjugate, and the adjoint action of
momenta we get
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Angular Momentum: non-commutative

Further, the commuting coordinates introduced as

1

A 1 ) ) 0 FAY
Xe == (x,.L +X,-R) X+ 6P,

satisfying [)%,C,)A(jc] = 0, can be expressed like-wise as:
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Angular Momentum: non-commutative

case

Se 1 /6 /A A ~ A
X :5\@<BR+BL+B§+B§,)

A I 9 FAY Fal AN AN
XQC:E\/;<B]£—BL+B,£—BR)
We now perform canonical transformation similar to the
commutative case
X¢ . .
XC X = —= and P,-—>;3,-:\/§P; Vi=1,2
Vo

We then calculate following commutation relatlon

[ J1] = 5( ,1P1 —5,'2/32) and [P”Jl] = ( ioXo — 5'1>A<1)
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Angular Momentum: non-commutative
case

~c T i A/ A/ .
[%¢, o] = —= (0nps + 0py) and [pl, ho] = ( 1% + 6i2%1)
2

[%7 kk— €% and (6}, 5] = %@

where p! = p’ . This shows that the Angular momentum

operators generates simultaneous SO(2) rotations in
orthogonal planes (not the phase-space!) here as well but the
roles of these operators are different then their commutative
counterpart

JNE o JE JNC 5 JC and JNC & JC
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SHO: commutative case
Here the Hamiltonian is given by

A 1 5 12
H = Spw’X? + —P? 1
| = ppw XA+ o (18)

which with the substitution in terms of ladder operators using
5 1 1

2 A A AT A A A AT A At A AT A
X = QM_W (alal + aIaI + a4, + a£a£> + M_UJ (a{al + a$a2 + 1)
e W [, A A A A A A A A A A
P? = —’u? (alal +ala] + 88 + agaD + pw (a{al + 44, + 1) :
so that we get SU(2) invariant Hamiltonian

I:I, =w (aial + agag + 1) )

whose spectrum is just A, |m) @ |n) = w(2j + 1) |m) @ |n)
where j = 1(m + n) as expected.
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SHO: non-commutative case

Let's first study the unphysical SHO (involving X*
Hamiltonian is

H>

15 1 2,
= P>+ 2w (X9)? 19
3P () (19)
We might naively expect this to be similar to commutative

case, which is not completely true. Let's construct the ladder
operators here

& — \/21u_w (ks —iP). & = ﬁ (hoke +iB) Vi =1
(20)

The corresponding ground state |Q) € H,, is then defined as

i|Q) = 0. Note that there is another “Vacuum” state |0)(0]

satisfying B,]0)(0| = 0 = B%|0)(0].
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SHO: non-commutative case

These two matches only under a special choice of parameters
i and w, which we call as a critical point:

fo=— = —&= (21)
At this critical point our Hamiltonian H, becomes
~ 2, 0 2 A A A
fy = wo (E(XC)Z + ZP2) = wo (BBL+ BrBj +1).

which reproduces the spectrum of commutative case i.e.
E =wo(2j+1).
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SHO: non-commutative case

Now for arbitrary values of parameters ;1 and w Hamiltonian
takes the form

H, = (éféL + éj&,éR> + (éfé,; + é,*;,éL> (22)

where 2 2

ju; 1 Hw 1
= — and = - — 23
4 + 16 and 5 4 116 (23)
To diagonalize the Hamiltonian we perform following
Bogoliubov transformation

éi ~ [cosh¢ sinh¢ B, (24)
By,) ~ \sinh¢ cosh¢ ) \ B
This ensures [B], B]'] = —[Bk, Bi] = 1. So that we get
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SHO: non-commutative case

+ 2asinh? ¢ — 28 sinh ¢ cosh ¢ +

Setting the coefficient of the off-diagonal term to zero we get

coth ¢ + tanh ¢ = % (25)

which gives two roots with the smaller one being
tanh ¢ = %(a — w). Also the Hamiltonian becomes (with this
solution)

Fo = (B['BL + BrBj +1) (26)
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SHO: non-commutative case

This again reproduces the spectrum of commutative case with
arbitrary parameter w (rather than wyp). Also note that the
Bogoliubov transformation used above is actually equivalent to
following canonical transformation

Xje=e"Xs, Pl=e?P (27)

where e? = \/“T“’G for the particular solution we have choosen.

This transformation is in turn equivalent to following unitary
transformation

X =e?X = e‘éd’D)A(feé‘w, (28)

where D = 1(XeP, + BXE) = i(B}Bx — BLBYL) is the
dilatation operator.
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SHO: non-commutative case

Now as for the physical Hamiltonian for SHO in
non-commutative case we have

~ 1 » 1 Ay
Hy = —P? + Zpuw?(X)? 2
3 20 +2NW() (29)

Re-writing s in terms of )A<,-C, by eliminating X; we obtain

N 1 2 1 2, 62 =~ .
Hy = —P? + = w? | (X°)? + —P? + 20| .
5= 2 + S 1w [( )° + 1 + J3} (30)

which after re-organizing can be written as

Y 12’21//2

Ay = —P? 4 =
3= oy +2MW
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SHO: non-commutative case

where the renormalized paramters ' and W', satisfying
pw? = pw', are given by:

1 1 202 2 202
—,=—+'uw4 and cu'z:cu2(1—i-'uoj1 )
2 1%

Now the extra Zeeman term in the Hamiltonian breaks the
SU(2) symmetry to U(1) symmetry. The spectrum can easily
be read off using previous excercise unphysical SHO

E(j,j3) = w'(2 + 1) + 0p/w?)s (32)

This clearly suggests that these renormalised parameters w’
and g/ rather than their 'bare’ counterparts w and p, which
are the observable quantities of the theory.
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Missed out stuff and current interest

@ time-reversal symmetry breaking due to Zeeman term

@ analogy with squeezed coherent state (Eur. Phys. J. Plus
(2015) 130: 120)

@ I'm currently involved in studying the geometry of such

non-commutative spaces using the Connes spectral triple
formalism.
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Thank You!
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