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Luscher in 1977 [Lus77], using conformal structures of dS,.

@ In a 2017 paper [ILP17] SU(2) Yang—Mills solutions rederived, that was earlier found by
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions rederived, that was earlier found by
Lischer in 1977 [Lis77], using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for

7 = (—%,%) along with the fact that S* is the group manifold of SU(2).
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions rederived, that was earlier found by
Lischer in 1977 [Lis77], using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for

7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions rederived, that was earlier found by
Lischer in 1977 [Lis77], using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for

7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

@ For us the strategy would be: Z x AdS; conformal AdS, conformal, 7 » Sj’_ followed by the
previous Z x §3 2203, R1.3 and noting that AdS; is the group manifold of SU(1,1).
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions rederived, that was earlier found by
Lischer in 1977 [Lis77], using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for

7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

@ For us the strategy would be: Z x AdS; conformal AdS, conformal, 7 » Sj’_ followed by the
previous Z x §3 2203, R1.3 and noting that AdS; is the group manifold of SU(1,1).

@ In both cases, gluing of two copies of dS;/AdS, is used to cover the full Minkowski space.
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It is well known that dS,, viewed through embedding in R1#* via

is conformal to both Minkowski space and an S3-cylinder.

—(X0)2+(X1)2+(X2)2+(X3)2+(X4)2 _ R2’
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It is well known that dS,, viewed through embedding in R* via
(O ()2 () + () + () = R (1)

is conformal to both Minkowski space and an S3-cylinder. This is evident from its flat metric in
appropriate (polar) coordinate patches with common S2-metric dQ3 = d#? + sin®4d¢?:

R2 2
ds? = — 5 (—dT2 + dy? +sinzxd§2§) = — (d7'2 —|—dQ§)
sin“T sin“T
A ) (2)
R R

= (=dt? +dr? + rPdQ3) = = (—dt? + dx® + dy? + d2°)

where 7 € T := (n/2,7/2), x €[0,7], t e Ry & r € R.

conformal
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It is well known that dS,, viewed through embedding in R* via
(O ()2 () + () + () = R (1)

is conformal to both Minkowski space and an S3-cylinder. This is evident from its flat metric in
appropriate (polar) coordinate patches with common S2-metric dQ3 = d#? + sin®4d¢?:

R2 2
ds? = — 5 (—dT2 + dy? +sinzxd§2§) = — (d7'2 —|—dQ§)
sin“T sin“T
A ) (2)
R R

= (=dt? +dr? + rPdQ3) = = (—dt? + dx® + dy? + d2°)

where 7 € T := (n/2,7/2), x € [0,7], t € Ry & r € R. Notice that this only covers future
half of the Minkowski space! This is due to the following constraint:

cosT >cosy <= x>|7|. (3)

;i p . conformal 4 3
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting Recap: dS4 —— R’



o YamgMilsAdsa /22 osoltens@Work
e 52 coordinates 0 € [0,7] & ¢ € [0, 27]
identified on both sides.
«O> 4 Fr «=)r» «=)» = o>
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e 52 coordinates 0 € [0,7] & ¢ € [0, 27]
identified on both sides.

e Effective map: (t,r) < (7, %)

t sinT

R CoST —cosy

r sin (4)
X

5 =

COST — COS)

«O> 4F > A=)r « =) = o>
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e 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.

o Effective map: (t,r) « (7, %)

sinT

cosT —cosy
sin x
COST — COS)

(4)

o~ D~

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).
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e 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.

o Effective map: (t,r) « (7, %)

sinT
cosT —cosy

sin x
COST — COS)

(4)

o~ D~

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).

@ This amounts to gluing two dS,4 copies at
t=7=0, half of which covers the full
Minkowski space.

;i p . conformal 4 3
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e 52 coordinates 0 € [0,7] & ¢ € [0, 27] T +
identified on both sides.
o Effective map: (t,r) « (7, %)

f+
sinT

cosT —cosy
sin x

(4)

D~ D~

COST — COS)

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).

@ This amounts to gluing two dS,4 copies at —z|
t=7=0, half of which covers the full
Minkowski space.

@ This is clearly deomnstrated with the
(7, x) Penrose diagram on the right with - 1 i
t- and r-slices.

SIE]
>

conformal
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We can isometrically embed AdS, inside R?3 as
_(X1)2 _ (X2)2 + (X3)2 + (X4)2 + (X5)2

—R? .

(5)
«40r «Fr <« «E» = o>
© KKumar (ITPLUH & ESLAwstia)  Geomemicalsetting o ags, conformal iz
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We can isometrically embed AdS, inside R%3 as
() = P+ () + (P + (5 = e )

Here also this takes two useful conformal avatars, easily seen from its flat-metric:

R? R?
2 _ 2 2 4 2 2 212\ 2 2
ds® = P (d® — cosh®pdr? + dp® + sinh?pd¢?) = o) (dyp? 4 dQ7 ,) o
_ K (=d7? + dx® +sin®x dQ3) = R (—dr* +dQ3,)
cos?y 2 cos?y 3+

where ¢ € Z = (—7/2,7/2), p € Ry, ¢,7 € St, but x € [0,7/2].

; 3 . conformal 1.3
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdS; —— R
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We can isometrically embed AdS, inside R%3 as
() = P+ () + (P + (5 = e )

Here also this takes two useful conformal avatars, easily seen from its flat-metric:

R? R?
2 2 2 2 2 s k2 2\ __ 2 2
ds® = P (d® — cosh®pdr? + dp® + sinh?pd¢?) = cos2w(dw +dQ,)
R2 2 2 2 2 R2 2 2 (6)

where ¢ € T = (—7/2,7/2), p € Ry, ¢,7 € S, but x € [0,7/2]. Thus, we get cylinders
(a) over (half of) the 3-sphere S3, and

(b) over AdS3 = SU(1, 1)/{+id} with metric d€; ».

; 3 . conformal 1.3
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdS; —— R
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Here the Si—structure is, in fact, nothing but conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and taniy = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

: : : conformal.— 1.5
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdS; —— R
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Here the Si—structure is, in fact, nothing but conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and taniy = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS, copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

conformal
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Here the Si—structure is, in fact, nothing but conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and taniy = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS, copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

e Joining two H3-slices while keeping 7 fixed. Equivalently, this means gluing two
S3-hemispheres, namely S3 and S3, along the equatorial 5%

tanhp =sinf tanhA = e sinf siny & tanvy = —e cosf sinh A = —¢ cosf tanx
L e=+1: pAeRy, x€[0,5) < northern hemisphere s3 (8)
where
e=-1: pAeR_, xe(5,mn] < southern hemisphere s?

K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdSy
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Here the Si—structure is, in fact, nothing but conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and taniy = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS, copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

e Joining two H3-slices while keeping 7 fixed. Equivalently, this means gluing two
S3-hemispheres, namely S3 and S3, along the equatorial 5%

tanhp =sinf tanhA = e sinf siny & tanvy = —e cosf sinh A = —¢ cosf tanx
L e=+1: pAeRy, x€[0,5) < northern hemisphere s3 (8)
where
e=-1: pAeR_, xe(5,mn] < southern hemisphere s?

@ Use the previous (7, x) — (t,r) map to get to the Minkowski space.

K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdSy
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This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

{loI=3} = {A=oc} = {x=3}

= {rP-P=R’} = Hp? = dS; 2 I x 87| .

(9)

: : : conformal.—1.5
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdS; —— R
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This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

{loI=3} = {A=oc} = {x=3}

— {P—t?=R?} = Hg» = dS; = T, X Sy -

(9)

One needs to be careful of the orientation of two two copies at the boundary as shown below

Ps P 1P} P
0 :
N\ ppirr, (N

P, P, P P,
0 undefined by 0 Pg=P, 3 ™

Figure 1: Gluing S (yellow shaded region) to S; (orange shaded region) along the (dashed) boundary.

; 3 . conformal 1.3
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdS; —— R
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71 of

(ME]
.

~
~

[ME]
0

0 5 ~ T k -
Figure 2: Gluing of two AdSs to reveal the full Minkowski space with the lightcone (red). Left: (7, x)
AdS; space (two copies) yielding the Penrose diagram with constant t- (blue) and r-slices (brown).

Right: (t, r) Minkowski space with boundary hyperbola Hy? (dashed) and constant 7- (blue) and
X-slices (brown).

=] =2 = = DA
. - . conformal 1.3
K.Kumar (ITP-LUH & ESI-Austria) Geometrical setting AdSy — R
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We start by noticing that AdSs; is the group manifold of SU(1, 1):
g: AdS; — SU(LL)  via  (yLyhy oyt = (

yl _1y2 y3 _1y4

«40r «Fr <« «E» = o>

(10)
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We start by noticing that AdSs; is the group manifold of SU(1,1):

1_:2 3_:4
i ) : 1.2 .3 4 y -y y -y
g AdSs — SU(1,1) via (v y5,y,y") — <y3 iyt ) iy2> . (10)

This map also yields the left-invariant one-forms e®, a = 0,1,2 via Maurer—Cartan method:
_ -i 0 01 0 —i
Pule) = a7dg = e b = (0 i)’ll: (1 o)’I2: (i 0)’ Y

where the s(2, R) generators /, of PSL(2,R) = SU(1,1)/{£id} are subject to

(o, Ig] = 2751, and tr(la Ig) = 2nap with  (n.p) = diag(—1,1,1) . (12)

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, SU(1, 1) Lie algebra and one-forms
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We start by noticing that AdSs; is the group manifold of SU(1,1):

1_:2 3_:4
i ) : 1.2 .3 4 y -y y -y
g AdSs — SU(1,1) via (v y5,y,y") — <y3 iyt ) iy2> . (10)

This map also yields the left-invariant one-forms e®, a = 0,1,2 via Maurer—Cartan method:
_ -i 0 01 0 —i
Pule) = a7dg = e b = (0 i)’ll: (1 o)’I2: (i 0)’ Y

where the s(2, R) generators /, of PSL(2,R) = SU(1,1)/{£id} are subject to

2

[loy 15] = 2 flﬂ Ly and tr(la Ig) = 2nap with  (n.p) = diag(—1,1,1) . (12)
Explicitly, we get the following one-forms on AdS3

e = cosh?p dr + sinh?p d¢ |
e! = cos(7—¢) dp +sinhp coshp sin(7—¢) d(7+¢) , (13)
e’ = —sin(7—¢) dp +sinhp coshp cos(r—¢) d(7+9) .

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, SU(1, 1) Lie algebra and one-forms
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The (non-)equivariant ansatz

These one-forms e® satisfy following Cartan structure equation
de® + %, P rne’=0

and provide a local orthonormal frame on the cylinder Z x AdSs:

sty = dY? +iagete”? = (e¥)? = (%) + (e')” + (%) .

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy,

The (non-)equivariant ansatz
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These one-forms e satisfy following Cartan structure equation
de® +f%, e NeT =0 (14)
and provide a local orthonormal frame on the cylinder Z x AdSs:
ds?) = dg® 4 1ags e“e? = (e¥)? — (%)% + (e')? + (e2)?. (15)
To make gauge field A = A, e¥ + A, e here SU(1,1)-symmetric we set Ay, = 0, such that

A = X, (1) e — F = X, e ne® +1(-2f% Xo +[Xs, X,]) e® A e . (16)

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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These one-forms e satisfy following Cartan structure equation
de® +f%, e NeT =0 (14)
and provide a local orthonormal frame on the cylinder Z x AdSs:
dsZy = dy® +nage”e” =i (e¥)? — (%) + (") + (*)* . (15)
To make gauge field A = A, e¥ + A, e here SU(1,1)-symmetric we set Ay, = 0, such that
A = X, (1) e — F = X, e ne® +1(-2f% Xo +[Xs, X,]) e® A e . (16)
Moreover, to satisfy the Gauss-law constraint [Xa,X(;] = 0 we chose

Xo=00()lh, Xi=01()h, Xo=02)h. (17)

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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This gives us the following Yang—Mills Langrangian
L = YwFu Fre+ LaFg, FP
= H(©1)* + (05)* + (05)*} — 2{(©1—0200)* + (©2—0001)* + (€9—©0102)*} ,

(18)
which enjoys a discrete symmetry of the permutation group S;.

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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This gives us the following Yang—Mills Langrangian
L = YwFu Fre+ LaFg, FP

= 2{(01)° +(92)* + (80)*} — 2{(©1-©200)* + (©2-0O1)* + (©0—©:10,)*} ,
(18)
which enjoys a discrete symmetry of the permutation group S;. Two subgroups of S;, namely
S3 (non-Abelian) and Dg (Abelian), yields interesting solutions as follows.

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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This gives us the following Yang—Mills Langrangian
L = YwFu Fre+ LaFg, FP

= 2{(01)° +(92)* + (80)*} — 2{(©1-©200)* + (©2-0O1)* + (©0—©:10,)*} ,
(18)
which enjoys a discrete symmetry of the permutation group S;. Two subgroups of S;, namely
S3 (non-Abelian) and Dg (Abelian), yields interesting solutions as follows.

o Non-equivariant Abelian ansatz:

60 = h(’lﬂ) while 61 = 62 =0 y
= h" = —4h

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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This gives us the following Yang—Mills Langrangian
L = YwFu Fre+ LaFg, FP

= 2{(01)° +(92)* + (80)*} — 2{(©1-©200)* + (©2-0O1)* + (©0—©:10,)*} ,
(18)
which enjoys a discrete symmetry of the permutation group S;. Two subgroups of S;, namely
S3 (non-Abelian) and Dg (Abelian), yields interesting solutions as follows.

o Non-equivariant Abelian ansatz: v

4

60 = h(’lﬂ) while 61 = 62 =0 y
= h" = —4h

e Equivariant non-Ablian ansatz:

©y=0; =06, = %(1+¢(w))

= 0 = 20(1-¢?) = ¥

Figure 3: Potential V(®) =

K.Kumar (ITP-LUH & ESI-Austria) Yang—Mills on AdSy, The (non-)equivariant ansatz
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Non-Abelian solution

Using (7, p, %) — (7,x,0) — (¢, r,0) for R=1 and abbreviations x - dx := x,dx* and £°

el = €2 := ¢, we can write the Minkowski one-forms in a compact form as,
e = #0422 (2(A+2) dx® —4x® x - dx — 4 %, Xﬁdx'y) ,

e¥ = ﬁ(—Q)\dz+4zx~dx), where X\ = rP —t> 1.

K.Kumar (ITP-LUH & ESI-Austria) Exact gauge fields

=1,

(19)
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Using (7, p,v) — (7, x,0) — (t,r,0) for R=1 and abbreviations x - dx := x,dx* and €° := 1,
el = €2 := ¢, we can write the Minkowski one-forms in a compact form as,

e = pigm (2A+2)dx* —4x% x - dx — 4% xPdx7)

19
e¥ = W(f2)\dz+42x~dx), where X\ = r2—t>—1. (19)

Fields are obtained from the field strength of A= A = %(1 + <D(7JJ(X))> lo €9, dx*,
F=3(0W0) lueet — J(1-0(6(x)") la 3, eher, ) dx" Adx”: (20)

K.Kumar (ITP-LUH & ESI-Austria) Exact gauge fields Non-Abelian solution
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Using (7, p,v) — (7, x,0) — (t,r,0) for R=1 and abbreviations x - dx := x,dx* and €° := 1,
el = €2 := ¢, we can write the Minkowski one-forms in a compact form as,

e = pigm (2A+2)dx* —4x% x - dx — 4% xPdx7)

19
e¥ = W(f2)\dz+42x~dx), where X\ = r2—t2_1. (19)

Fields are obtained from the field strength of A= A = %(1 + <D(7JJ(X))> lo €9, dx*,
F = %(¢’(¢(x)) lnebe?, — L(1-0((x))%) I £, e e V) dx Adx”: (20)

Color EM fields in terms of Riemann—Silberstein vector S := E + iB:

ied’ +d2— . . . . .
S = —% {2 [ty—l—lx(z—i—l)] Io + 2¢ [xy—&—lt(z—i—l)] h+ e[tQ—x2+y2+(z+1)2] I2}

S = (i(IZT;;L;igllz) { [tx—iy(z+1)] o + e [P +x*—y?+(z+1)?| h + 2¢ [xy—it(z+])] /2}

S, = )2\(152?;)+¢+;12) {1 [2+x2+y? —(z+1)?] lo + 2¢ [itx—y(z+i)| h + 2¢[ity+x(z+i)] IQ}

V.

K.Kumar (ITP-LUH & ESI-Austria) Exact gauge fields Non-Abelian

solution
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The corresponding stress-energy tensor

T = _ﬁ (5;[)51//\77” = #un”0°7) tr (Fpo Far) (21)
also takes a nice compact form as (e := —3 ((®')? + (1-9?)?))
8 aff = —770430\2+422) =+ 16X0<X/322 ’
_ % _ € tap  ta3 : _ _ a2
(TW> - g2 ()\2+4z2)3 (t3a t33> with o = a3 = 8XQZ()\ 3 )7 (22)

t33 = 302 —4Z3(1 + 4\ — 42%)
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The corresponding stress-energy tensor

T = =20 (8,L6,)01°7 = 31un” 1°7) tr (Foo Far) (21)
also takes a nice compact form as (e := —3 ((®')? + (1-9?)?))
8 tap t tag = —Nap(N’+42%) + 16xax52°,
— %€ ([t te3 i = = — —322
(TW> - g2 ()\2+4z2)3 (t3a t33> with o = a3 = 8XQZ()\ 3 )7 (22)

t33 = 302 —4Z3(1 + 4\ — 42%)

The fields E, B and T, are singular at the intersection of A=0 hyperbola HY? and z=0-plane.
Yoo L Figure 4: Plots for the energy
7 e density p oc (A4-42%)72|i—o.
? & \ wo, Left: Level sets for the values
10 (orange), 100 (cyan), and

\/ e 1000 (brown). Right: Density

g plot emphasizing the maxima.
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For the Abelian case we judiciously chose h(z) to obtain same fields on both sides of H'2,
A = —1 cos2(¥(x)+eho) e®, dx*  and
N (23)
F = {sin2(¢(x)+eto) €%,€", — cos2((x)+erho) €',€%, } dx Adx” .
«40r «Fr <« «E» = o>
" KKumar (ITP-LUH & ESl-Austria) ~ Exactgaugefields ~ Apeliansolution
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For the Abelian case we judiciously chose h(1)) to obtain same fields on both sides of H'2,
A —1 cos 2(1h(x)+erbo) eoH dx* and

F

(23)
{sin2(¢(x)+ero) €%,€°, — cos2(p(x)+eth) €',€%, } dxH A dx” .

RS-vector reminiscent of the Hopf—~Ranada knot

= = 4e2iwo -2 (ty +. X (Z—H))
E+1B:m 2 (tx — iy (z-+i))
i (82 + x>+ y? — (z4i)?)
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For the Abelian case we judiciously chose h(1)) to obtain same fields on both sides of H'2,
A —1 cos 2(1h(x)+erbo) eoH dx* and

F

(23)
{sin2(¢(x)+ero) €%,€°, — cos2(p(x)+eth) €',€%, } dxH A dx” .

RS-vector reminiscent of the Hopf—~Ranada knot

=2 (ty +ix(z+i))

2 (tx — iy (z-+i)) ’
(12 +x%+ y? — (z+i)?) z,

On the right we show typical electric (red) and mag-

netic (green) field lines for t=10 and =7 inside -0

the boundary sphere r=+/101. The fields diverge at - s
the (black) singular equatorial circle. X s

K.Kumar (ITP-LUH & ESI-Austria) Exact gauge fields Abelian solution
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o First, we employed the AdSs-slicing of AdS, and the group manifold structure of SU(1,1)
to find Yang—Mills solutions on Z x AdSs.
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Conclusion

e First, we employed the AdSs-slicing of AdS, and the group manifold structure of SU(1,1)
to find Yang—Mills solutions on Z x AdSs.

o Next, using the AdS; — R'3 conformal map via AdSs- and S3-cylinders, we obtained
Minkowski solutions as Yang—Mills theory is invariant in 4-dimensions.
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to find Yang—Mills solutions on Z x AdSs.

o Next, using the AdS; — R'3 conformal map via AdSs- and S3-cylinders, we obtained
Minkowski solutions as Yang—Mills theory is invariant in 4-dimensions.

@ These gauge fields are singular at a 2-dimensional hyperboloid x?>+y?—t> = 1, but this
singularity is milder than the one we started with, namely A\ := r’—t>—~1 = 0.
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@ These gauge fields are singular at a 2-dimensional hyperboloid x?>+y?—t> = 1, but this
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@ Due to this singularity the total energy diverges for both kinds of gauge fields.
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Conclusion

e First, we employed the AdSs-slicing of AdS, and the group manifold structure of SU(1,1)
to find Yang—Mills solutions on Z x AdSs.

o Next, using the AdS; — R'3 conformal map via AdSs- and S3-cylinders, we obtained
Minkowski solutions as Yang—Mills theory is invariant in 4-dimensions.

@ These gauge fields are singular at a 2-dimensional hyperboloid x?>+y?—t> = 1, but this
singularity is milder than the one we started with, namely A\ := r’—t>—~1 = 0.

@ Due to this singularity the total energy diverges for both kinds of gauge fields.

@ Indeed, it is difficult to justify these solutions on physical grounds, but they could be relevant
in some supergravity or syper Yang—Mills theories.
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