Exact gauge fields from anti-de Sitter space

(arXiv:2301.03606)

Kaushlendra Kumar
k-kumar.netlify.app
In collaboration with Olaf Lechtenfeld,
Gabriel Picanço \& Savan Hirpara

[^0]July 27, 2023

Table of Contents

（1）Introduction
（2）Geometrical setting
－Recap： $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
－ $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
（3）Yang－Mills on AdS_{4}
－ $\operatorname{SU}(1,1)$ Lie algebra and one－forms
（4）Exact gauge field＇s
－Non－Abelian solution
－Abelian solution
（5）Conclusion

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- We use similar techniques to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact cousin of $\operatorname{SU}(2)$ i.e. $\operatorname{SU}(1,1)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\rightleftarrows} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- We use similar techniques to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact cousin of $\operatorname{SU}(2)$ i.e. $\operatorname{SU}(1,1)$.
- Strategy: $\mathcal{I} \times \mathrm{AdS}_{3} \stackrel{\text { conformal }}{ } \mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathcal{I} \times S_{+}^{3}$ followed by the previous $\mathcal{I} \times S^{3} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ and noting that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- We use similar techniques to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact cousin of $\operatorname{SU}(2)$ i.e. $\operatorname{SU}(1,1)$.
- Strategy: $\mathcal{I} \times \mathrm{AdS}_{3} \stackrel{\text { conformal }}{ } \mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathcal{I} \times S_{+}^{3}$ followed by the previous $\mathcal{I} \times S^{3} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ and noting that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$.
- In both cases, gluing of two copies of $\mathrm{dS}_{4} / \mathrm{AdS}_{4}$ is needed to cover full Minkowski space.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS $_{4}$
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$

- Two conformal avatars of dS_{4} [KL20] with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}(\theta \in[0, \pi] \& \phi \in[0,2 \pi]):$

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S^{3}-\mathrm{cyl} \tag{1}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{2}^{2}\right) \quad \text { Mink },
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$.

- Two conformal avatars of dS_{4} [KL20] with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}(\theta \in[0, \pi] \& \phi \in[0,2 \pi])$:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S^{3}-\mathrm{cyl} \tag{1}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+\mathrm{r}^{2} \mathrm{~d} \Omega_{2}^{2}\right) \quad \text { Mink },
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$.

- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$ with constraint $\chi>|\tau|$:

$$
\begin{equation*}
\frac{t}{R}=\frac{\sin \tau}{\cos \tau-\cos \chi}, \quad \frac{r}{R}=\frac{\sin \chi}{\cos \tau-\cos \chi} . \tag{2}
\end{equation*}
$$

- Two conformal avatars of dS_{4} [KL20] with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}(\theta \in[0, \pi] \& \phi \in[0,2 \pi]):$

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S^{3}-\mathrm{cyl} \tag{1}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{2}^{2}\right) \quad \text { Mink },
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$.

- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$ with constraint $\chi>|\tau|$:

$$
\begin{equation*}
\frac{t}{R}=\frac{\sin \tau}{\cos \tau-\cos \chi}, \quad \frac{r}{R}=\frac{\sin \chi}{\cos \tau-\cos \chi} . \tag{2}
\end{equation*}
$$

- To recover full Minkowski space, extend τ to $\widetilde{\mathcal{I}}:=(-\pi, \pi)$; glue two dS_{4} copies at $t=\tau=0$. See Penrose diagram on right.
- Two conformal avatars of dS_{4} [KL20] with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}(\theta \in[0, \pi] \& \phi \in[0,2 \pi])$:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S^{3}-\text { cyl } \tag{1}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{2}^{2}\right) \quad \text { Mink }
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$.

- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$ with constraint $\chi>|\tau|$:

$$
\begin{equation*}
\frac{t}{R}=\frac{\sin \tau}{\cos \tau-\cos \chi}, \quad \frac{r}{R}=\frac{\sin \chi}{\cos \tau-\cos \chi} . \tag{2}
\end{equation*}
$$

- To recover full Minkowski space, extend τ to $\widetilde{\mathcal{I}}:=(-\pi, \pi)$; glue two dS_{4} copies at $t=\tau=0$. See Penrose diagram on right.

$\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$

- Consider following two conformal versions of AdS_{4},

$$
\begin{align*}
& \mathrm{d} s^{2}=\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right) \quad \text { AdS } \\
& 3-\mathrm{cyl} \tag{3}\\
&=\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S_{+}^{3}-\mathrm{cyl}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2)$.

- Consider following two conformal versions of AdS_{4},

$$
\begin{align*}
& \mathrm{d} s^{2}=\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right) \quad \text { AdS } \\
& 3-c y l \tag{3}\\
&=\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S_{+}^{3}-\mathrm{cyl}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2)$.

- Need to glue two AdS_{4} copies—this time sideways—to recover full Minkowski space; can be achieved in two steps:
- Consider following two conformal versions of AdS_{4},

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right) \quad \mathrm{AdS}_{3}-\mathrm{cyl} \\
& =\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S_{+}^{3}-\mathrm{cyl} \tag{3}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2)$.

- Need to glue two AdS_{4} copies-this time sideways-to recover full Minkowski space; can be achieved in two steps:

1. Join $S_{+}^{3}\left(\varepsilon=+1, \chi<\frac{\pi}{2}\right)$ with $S_{-}^{3}\left(\varepsilon=-1, \chi>\frac{\pi}{2}\right)$ along the equatorial S^{2} via

$$
\begin{equation*}
\tanh \rho=\varepsilon \sin \theta \sin \chi, \quad \tan \psi=-\varepsilon \cos \theta \tan \chi \tag{4}
\end{equation*}
$$

- Consider following two conformal versions of AdS_{4},

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right) \quad \mathrm{AdS}_{3}-\mathrm{cyl} \\
& =\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S_{+}^{3}-\mathrm{cyl} \tag{3}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2)$.

- Need to glue two AdS_{4} copies-this time sideways-to recover full Minkowski space; can be achieved in two steps:

1. Join $S_{+}^{3}\left(\varepsilon=+1, \chi<\frac{\pi}{2}\right)$ with $S_{-}^{3}\left(\varepsilon=-1, \chi>\frac{\pi}{2}\right)$ along the equatorial S^{2} via

$$
\begin{equation*}
\tanh \rho=\varepsilon \sin \theta \sin \chi, \quad \tan \psi=-\varepsilon \cos \theta \tan \chi \tag{4}
\end{equation*}
$$

2. Use previous $(\tau, \chi) \rightarrow(t, r)$ to get Minkowski coordinates; effectively, $(\tau, \rho, \psi) \xrightarrow{\text { Conf. }}(t, r, \theta)$.

- Consider following two conformal versions of AdS_{4},

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right) \quad \mathrm{AdS}_{3}-\mathrm{cyl} \\
& =\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right) \quad S_{+}^{3}-\mathrm{cyl} \tag{3}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2)$.

- Need to glue two AdS_{4} copies-this time sideways-to recover full Minkowski space; can be achieved in two steps:

1. Join $S_{+}^{3}\left(\varepsilon=+1, \chi<\frac{\pi}{2}\right)$ with $S_{-}^{3}\left(\varepsilon=-1, \chi>\frac{\pi}{2}\right)$ along the equatorial S^{2} via

$$
\begin{equation*}
\tanh \rho=\varepsilon \sin \theta \sin \chi, \quad \tan \psi=-\varepsilon \cos \theta \tan \chi \tag{4}
\end{equation*}
$$

2. Use previous $(\tau, \chi) \rightarrow(t, r)$ to get Minkowski coordinates; effectively, $(\tau, \rho, \psi) \xrightarrow{\text { Conf. }}(t, r, \theta)$.

- Caveat: singularity encountered @boundary $\chi=\frac{\pi}{2}$, which is $r^{2}-t^{2}=R^{2}$.

Figure 1: Gluing of two AdS_{4} (across dashed line) to reveal full Minkowski space with the lightcone @origin (red). Left: Penrose diagram of (τ, χ) space with constant t - (blue) and r-slices (brown). Right: Minkowski space of $(t, r$) coordinates with constant (blue) τ - and (brown) χ-slices.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

SU(1,1) Lie algebra and one-forms

$$
\mathrm{AdS}_{3} \ni\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{cc}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{5}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) \in \mathrm{SU}(1,1) \quad \text { group manifold }
$$

$$
\mathrm{AdS}_{3} \ni\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{5}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) \in \mathrm{SU}(1,1) \quad \text { group manifold }
$$

Can obtain the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\begin{equation*}
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \tag{6}
\end{equation*}
$$

with $f_{01}^{2}=f_{20}^{1}=-f_{12}^{0}=1$ for $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} and $\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1)$.

$$
\mathrm{AdS}_{3} \ni\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{5}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) \in \mathrm{SU}(1,1) \quad \text { group manifold }
$$

Can obtain the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\begin{equation*}
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \tag{6}
\end{equation*}
$$

with $f_{01}^{2}=f_{20}^{1}=-f_{12}^{0}=1$ for $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} and $\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1)$. Moreover,

$$
\begin{equation*}
\text { Cartan } \quad \mathrm{d} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \quad \text { and } \quad \mathrm{d} s_{\mathrm{cyl}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta} \quad \text { ON-frame } \tag{7}
\end{equation*}
$$

$$
\operatorname{AdS}_{3} \ni\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{5}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) \in \mathrm{SU}(1,1) \quad \text { group manifold }
$$

Can obtain the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\begin{equation*}
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \tag{6}
\end{equation*}
$$

with $f_{01}^{2}=f_{20}^{1}=-f_{12}^{0}=1$ for $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} and $\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1)$. Moreover,

$$
\begin{equation*}
\text { Cartan } \quad \mathrm{d} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \quad \text { and } \quad \mathrm{d} s_{\mathrm{cyl}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta} \quad \text { ON-frame } \tag{7}
\end{equation*}
$$

A generic gauge field \mathcal{A} in this frame can be made $\operatorname{SU}(1,1)$-symmetric by,

$$
\begin{align*}
& \mathcal{A}=\mathcal{A}_{\psi} e^{\psi}+\mathcal{A}_{\alpha} e^{\alpha} \quad \xrightarrow{\mathcal{A}_{\psi}=0} \quad \mathcal{A}=X_{\alpha}(\psi) e^{\alpha} \tag{8}\\
& \Longrightarrow \mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=X_{\alpha}^{\prime} e^{\psi} \wedge e^{\alpha}+\frac{1}{2}\left(-2 f_{\beta \gamma}^{\alpha} X_{\alpha}+\left[X_{\beta}, X_{\gamma}\right]\right) e^{\beta} \wedge e^{\gamma} .
\end{align*}
$$

$$
\mathrm{AdS}_{3} \ni\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{cc}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{5}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) \in \mathrm{SU}(1,1) \quad \text { group manifold }
$$

Can obtain the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\begin{equation*}
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \tag{6}
\end{equation*}
$$

with $f_{01}^{2}=f_{20}^{1}=-f_{12}^{0}=1$ for $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} and $\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1)$. Moreover,

$$
\begin{equation*}
\text { Cartan } \quad \mathrm{d} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \quad \text { and } \quad \mathrm{d} s_{\mathrm{cyl}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta} \quad \text { ON-frame } \tag{7}
\end{equation*}
$$

A generic gauge field \mathcal{A} in this frame can be made $\operatorname{SU}(1,1)$-symmetric by,

$$
\begin{align*}
& \mathcal{A}=\mathcal{A}_{\psi} e^{\psi}+\mathcal{A}_{\alpha} e^{\alpha} \quad \xrightarrow{\mathcal{A}_{\psi}=0} \quad \mathcal{A}=X_{\alpha}(\psi) e^{\alpha} \tag{8}\\
& \Longrightarrow \mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=X_{\alpha}^{\prime} e^{\psi} \wedge e^{\alpha}+\frac{1}{2}\left(-2 f_{\beta \gamma}^{\alpha} X_{\alpha}+\left[X_{\beta}, X_{\gamma}\right]\right) e^{\beta} \wedge e^{\gamma} .
\end{align*}
$$

Gauss-law constraint $\left[X_{\alpha}, X_{\alpha}^{\prime}\right]=0$ of the eom $* \mathrm{~d} * \mathcal{F}=0$ can be readily satisfied for

$$
\begin{equation*}
X_{0}=\Theta_{0}(\psi) I_{0}, \quad X_{1}=\Theta_{1}(\psi) I_{1}, \quad X_{2}=\Theta_{2}(\psi) I_{2} \tag{9}
\end{equation*}
$$

The Yang-Mills Langrangian $\mathcal{L}=\frac{1}{4} \operatorname{tr}(\mathcal{F} \wedge * \mathcal{F})$ computes to,

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2} \sum_{\alpha}\left(\Theta_{\alpha}^{\prime}\right)^{2}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} \tag{10}
\end{align*}
$$

The Yang-Mills Langrangian $\mathcal{L}=\frac{1}{4} \operatorname{tr}(\mathcal{F} \wedge * \mathcal{F})$ computes to,

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2} \sum_{\alpha}\left(\Theta_{\alpha}^{\prime}\right)^{2}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} \tag{10}
\end{align*}
$$

Notice the discrete symmetry of the permutation group S_{4}, acting by permuting $\left\{\Theta_{\alpha}\right\}$ and flipping the sign of any two. Its maximal normal subgroups S_{3} and D_{8} yields exact solutions:

The Yang-Mills Langrangian $\mathcal{L}=\frac{1}{4} \operatorname{tr}(\mathcal{F} \wedge * \mathcal{F})$ computes to,

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2} \sum_{\alpha}\left(\Theta_{\alpha}^{\prime}\right)^{2}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} . \tag{10}
\end{align*}
$$

Notice the discrete symmetry of the permutation group S_{4}, acting by permuting $\left\{\Theta_{\alpha}\right\}$ and flipping the sign of any two. Its maximal normal subgroups S_{3} and D_{8} yields exact solutions:

- Non-equivariant Abelian ansatz:

$$
\begin{gathered}
\Theta_{0}=\mathrm{h}(\psi) \quad \text { while } \quad \Theta_{1}=\Theta_{2}=0, \\
\Longrightarrow \mathrm{~h}^{\prime \prime}=-4 \mathrm{~h}
\end{gathered}
$$

The Yang-Mills Langrangian $\mathcal{L}=\frac{1}{4} \operatorname{tr}(\mathcal{F} \wedge * \mathcal{F})$ computes to,

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2} \sum_{\alpha}\left(\Theta_{\alpha}^{\prime}\right)^{2}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} . \tag{10}
\end{align*}
$$

Notice the discrete symmetry of the permutation group S_{4}, acting by permuting $\left\{\Theta_{\alpha}\right\}$ and flipping the sign of any two. Its maximal normal subgroups S_{3} and D_{8} yields exact solutions:

- Non-equivariant Abelian ansatz:

$$
\begin{aligned}
& \Theta_{0}=\mathrm{h}(\psi) \quad \text { while } \quad \Theta_{1}=\Theta_{2}=0, \\
& \Longrightarrow \mathrm{~h}^{\prime \prime}=-4 \mathrm{~h}
\end{aligned}
$$

- Equivariant non-Ablian ansatz:

$$
\begin{aligned}
& \Theta_{0}=\Theta_{1}=\Theta_{2}=: \frac{1}{2}(1+\Phi(\psi)) \\
& \Longrightarrow \Phi^{\prime \prime}=2 \Phi\left(1-\Phi^{2}\right)=-\frac{\partial V}{\partial \Phi}
\end{aligned}
$$

The Yang-Mills Langrangian $\mathcal{L}=\frac{1}{4} \operatorname{tr}(\mathcal{F} \wedge * \mathcal{F})$ computes to,

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2} \sum_{\alpha}\left(\Theta_{\alpha}^{\prime}\right)^{2}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} . \tag{10}
\end{align*}
$$

Notice the discrete symmetry of the permutation group S_{4}, acting by permuting $\left\{\Theta_{\alpha}\right\}$ and flipping the sign of any two. Its maximal normal subgroups S_{3} and D_{8} yields exact solutions:

- Non-equivariant Abelian ansatz:

$$
\begin{aligned}
\Theta_{0} & =\mathrm{h}(\psi) \quad \text { while } \quad \Theta_{1}=\Theta_{2}=0 \\
& \Longrightarrow \mathrm{~h}^{\prime \prime}=-4 \mathrm{~h}
\end{aligned}
$$

- Equivariant non-Ablian ansatz:

$$
\begin{aligned}
& \Theta_{0}=\Theta_{1}=\Theta_{2}=: \frac{1}{2}(1+\Phi(\psi)) \\
& \Longrightarrow \Phi^{\prime \prime}=2 \Phi\left(1-\Phi^{2}\right)=-\frac{\partial V}{\partial \Phi}
\end{aligned}
$$

Figure 2: Potential $V(\Phi)=\frac{1}{2}\left(\Phi^{2}-1\right)^{2}$.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS $_{4}$
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms

4) Exact gauge fields

- Non-Abelian solution
- Abelian solution
(5) Conclusion

Non-Abelian solution

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2} 4 \mathrm{z}^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right), \tag{11}\\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1 .
\end{align*}
$$

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2}+4 z^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right) \tag{11}\\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1
\end{align*}
$$

Fields are obtained from the field strength F of $\mathcal{A} \equiv A=\frac{1}{2}(1+\Phi(\psi(x))) I_{\alpha} e^{\alpha}{ }_{\mu} \mathrm{d} x^{\mu}$,

$$
\begin{equation*}
F=\frac{1}{2}\left(\Phi^{\prime}(\psi(x)) I_{\alpha} e_{\mu}^{\psi} e_{\nu}^{\alpha}-\frac{1}{2}\left(1-\Phi(\psi(x))^{2}\right) I_{\alpha} f_{\beta \gamma}^{\alpha} e_{\mu}^{\beta} e_{\nu}^{\gamma}\right) \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}: \tag{12}
\end{equation*}
$$

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2}+4 z^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right) \tag{11}\\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1
\end{align*}
$$

Fields are obtained from the field strength F of $\mathcal{A} \equiv A=\frac{1}{2}(1+\Phi(\psi(x))) I_{\alpha} e^{\alpha}{ }_{\mu} \mathrm{d} x^{\mu}$,

$$
\begin{equation*}
F=\frac{1}{2}\left(\Phi^{\prime}(\psi(x)) I_{\alpha} e_{\mu}^{\psi} e_{\nu}^{\alpha}-\frac{1}{2}\left(1-\Phi(\psi(x))^{2}\right) I_{\alpha} f_{\beta \gamma}^{\alpha} e_{\mu}^{\beta} e_{\nu}^{\gamma}\right) \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}: \tag{12}
\end{equation*}
$$

Color EM fields in terms of Riemann-Silberstein vector $\vec{S}:=\vec{E}+\mathrm{i} \vec{B}$:

$$
\begin{aligned}
& S_{x}=-\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{iz})(\lambda+2 \mathrm{iz})^{2}}\left\{2[t y+\mathrm{i} x(z+\mathrm{i})] I_{0}+2 \varepsilon[x y+\mathrm{i} t(z+\mathrm{i})] I_{1}+\varepsilon\left[t^{2}-x^{2}+y^{2}+(z+\mathrm{i})^{2}\right] I_{2}\right\} \\
& S_{y}=\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{iz})(\lambda+2 \mathrm{iz})^{2}}\left\{2[t x-\mathrm{i} y(z+\mathrm{i})] I_{0}+\varepsilon\left[t^{2}+x^{2}-y^{2}+(z+\mathrm{i})^{2}\right] I_{1}+2 \varepsilon[x y-\mathrm{i} t(z+\mathrm{i})] I_{2}\right\} \\
& S_{z}=\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{i} z)(\lambda+2 \mathrm{iz})^{2}}\left\{\mathrm{i}\left[t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right] I_{0}+2 \varepsilon[\mathrm{i} t x-y(z+\mathrm{i})] I_{1}+2 \varepsilon[\mathrm{i} t y+x(z+\mathrm{i})] I_{2}\right\}
\end{aligned}
$$

The corresponding stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{2 g^{2}}\left(\delta_{\mu}^{\rho} \delta_{\nu}{ }^{\lambda} \eta^{\sigma \tau}-\frac{1}{4} \eta_{\mu \nu} \eta^{\rho \lambda} \eta^{\sigma \tau}\right) \operatorname{tr}\left(F_{\rho \sigma} F_{\lambda \tau}\right) \tag{13}
\end{equation*}
$$

also takes a nice compact form as $\left(\epsilon:=-\frac{1}{4}\left(\left(\Phi^{\prime}\right)^{2}+\left(1-\Phi^{2}\right)^{2}\right)\right)$

$$
\left(T_{\mu \nu}\right)=\frac{8}{g^{2}} \frac{\epsilon}{\left(\lambda^{2}+4 z^{2}\right)^{3}}\left(\begin{array}{ll}
\mathfrak{t}_{\alpha \beta} & \mathfrak{t}_{\alpha 3} \tag{14}\\
\mathfrak{t}_{3 \alpha} & \mathfrak{t}_{33}
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{l}
\mathfrak{t}_{\alpha \beta}=-\eta_{\alpha \beta}\left(\lambda^{2}+4 z^{2}\right)+16 x_{\alpha} x_{\beta} z^{2} \\
\mathfrak{t}_{3 \alpha}=\mathfrak{t}_{\alpha 3}=-8 x_{\alpha} z\left(\lambda-3 z^{2}\right) \\
\mathfrak{t}_{33}=3 \lambda^{2}-4 z^{2}\left(1+4 \lambda-4 z^{2}\right)
\end{array}\right.
$$

The corresponding stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{2 g^{2}}\left(\delta_{\mu}^{\rho} \delta_{\nu}{ }^{\lambda} \eta^{\sigma \tau}-\frac{1}{4} \eta_{\mu \nu} \eta^{\rho \lambda} \eta^{\sigma \tau}\right) \operatorname{tr}\left(F_{\rho \sigma} F_{\lambda \tau}\right) \tag{13}
\end{equation*}
$$

also takes a nice compact form as $\left(\epsilon:=-\frac{1}{4}\left(\left(\Phi^{\prime}\right)^{2}+\left(1-\Phi^{2}\right)^{2}\right)\right)$

$$
\left(T_{\mu \nu}\right)=\frac{8}{g^{2}} \frac{\epsilon}{\left(\lambda^{2}+4 z^{2}\right)^{3}}\left(\begin{array}{ll}
\mathfrak{t}_{\alpha \beta} & \mathfrak{t}_{\alpha 3} \tag{14}\\
\mathfrak{t}_{3 \alpha} & \mathfrak{t}_{33}
\end{array}\right) \quad \text { with } \quad\left\{\begin{aligned}
& \mathfrak{t}_{\alpha \beta}=-\eta_{\alpha \beta}\left(\lambda^{2}+4 z^{2}\right)+16 x_{\alpha} x_{\beta} z^{2} \\
& \mathfrak{t}_{3 \alpha}=\mathfrak{t}_{\alpha 3}=-8 x_{\alpha} z\left(\lambda-3 z^{2}\right) \\
& \mathfrak{t}_{33}=3 \lambda^{2}-4 z^{2}\left(1+4 \lambda-4 z^{2}\right)
\end{aligned}\right.
$$

The fields \vec{E}, \vec{B} and $T_{\mu \nu}$ are singular at the intersection of $\lambda=0$ hyperbola $H^{1,2}$ and $z=0$-plane.

Figure 3: Plots for the energy density $\left.\rho \propto\left(\lambda^{2}+4 z^{2}\right)^{-2}\right|_{t=0}$. Left: Level sets for the values 10 (orange), 100 (cyan), and 1000 (brown). Right: Density plot emphasizing the maxima.

Abelian solution

Same field expression across the hyperbola $\lambda=0$; choose $\widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu}$:

$$
\begin{equation*}
\widetilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{\psi}{ }_{\mu} e^{0}{ }_{\nu}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{1}{ }_{\mu} e^{2}{ }_{\nu}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} . \tag{15}
\end{equation*}
$$

Same field expression across the hyperbola $\lambda=0$; choose $\widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu}$:

$$
\begin{equation*}
\tilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{\psi} e_{\nu}^{0}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{1} e^{2}{ }_{\nu}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} . \tag{15}
\end{equation*}
$$

RS-vector reminiscent of the Hopf-Ranãda knot

$$
\overrightarrow{\vec{E}}+\mathrm{i} \vec{B}=\frac{4 \mathrm{e}^{2 \mathrm{i} \psi_{0}}}{(\lambda+2 \mathrm{iz})^{3}}\left(\begin{array}{c}
-2(t y+\mathrm{i} x(z+\mathrm{i})) \\
2(t x-\mathrm{i} y(z+\mathrm{i})) \\
\mathrm{i}\left(t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right)
\end{array}\right)
$$

Same field expression across the hyperbola $\lambda=0$; choose $\widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu}$:

$$
\begin{equation*}
\widetilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{\psi} e_{\nu}^{0}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{1} e_{\nu}^{2}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} . \tag{15}
\end{equation*}
$$

RS-vector reminiscent of the Hopf-Ranãda knot

$$
\overrightarrow{\vec{E}}+\mathrm{i} \overrightarrow{\vec{B}}=\frac{4 \mathrm{e}^{2 \mathrm{i} \psi_{0}}}{(\lambda+2 \mathrm{i} z)^{3}}\left(\begin{array}{c}
-2(t y+\mathrm{i} x(z+\mathrm{i})) \\
2(t x-\mathrm{i} y(z+\mathrm{i})) \\
\mathrm{i}\left(t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right)
\end{array}\right)
$$

- A limiting case $\psi_{0}=z=0$ reproduces the magnetic field of a magnetic vortex [RS18].

Same field expression across the hyperbola $\lambda=0$; choose $\widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu}$:

$$
\begin{equation*}
\tilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{\psi} e_{\nu}^{0}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{1} e_{\nu}^{2}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} . \tag{15}
\end{equation*}
$$

RS-vector reminiscent of the Hopf-Ranãda knot

$$
\overrightarrow{\vec{E}}+\mathrm{i} \overrightarrow{\vec{B}}=\frac{4 \mathrm{e}^{2 \mathrm{i} \psi_{0}}}{(\lambda+2 \mathrm{i} z)^{3}}\left(\begin{array}{c}
-2(t y+\mathrm{i} x(z+\mathrm{i})) \\
2(t x-\mathrm{i} y(z+\mathrm{i})) \\
\mathrm{i}\left(t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right)
\end{array}\right)
$$

- A limiting case $\psi_{0}=z=0$ reproduces the magnetic field of a magnetic vortex [RS18].
- Typical electric (red) and magnetic (green) field lines on right for $t=10, \psi_{0}=\frac{\pi}{2}$ inside $r=\sqrt{101}$. The fields diverge at the (black)
 singular equatorial circle: $\lambda=0 \bigcap z=0 \bigcap t=10$.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS $_{4}$
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, we used a series of conformal maps to transfer these solutions to Minkoowsi space, since Yang-Mills theory is conformally invariant in 4-dimensions.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, we used a series of conformal maps to transfer these solutions to Minkoowsi space, since Yang-Mills theory is conformally invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with, namely $r^{2}-t^{2}-1=0$.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, we used a series of conformal maps to transfer these solutions to Minkoowsi space, since Yang-Mills theory is conformally invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with, namely $r^{2}-t^{2}-1=0$.
- Due to this singularity the total energy diverges for both kinds of gauge fields, thereby limiting their physical usefulness.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, we used a series of conformal maps to transfer these solutions to Minkoowsi space, since Yang-Mills theory is conformally invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with, namely $r^{2}-t^{2}-1=0$.
- Due to this singularity the total energy diverges for both kinds of gauge fields, thereby limiting their physical usefulness.
- Nevertheless, our Abelian solutions were found to match the magnetic field of a known vortex magnetic mode on $\mathrm{SU}(1,1)$ [RS18]. What about the other two Abelian solutions?

References I

[Hir+23] S. Hirpara et al. "Exact gauge fields from anti-de Sitter space". In: (Jan. 2023). arXiv: 2301.03606 [hep-th].
[ILP17] T.A. Ivanova, O. Lechtenfeld, and A.D. Popov. "Solutions to Yang-Mills equations on four-dimensional de Sitter space". In: Phys. Rev. Lett. 119.6 (2017), p. 061601.
[KL20] K. Kumar and O. Lechtenfeld. "On rational electromagnetic fields". In: Phys. Lett. A 384 (2020), p. 126445.
[Lüs77] M. Lüscher. "SO(4) Symmetric Solutions of Minkowskian Yang-Mills Field Equations". In: Phys. Lett. B 70 (1977), pp. 321-324.
[RS18] C. Ross and B.J. Schroers. "Hyperbolic vortices and Dirac fields in $2+1$ dimensions". In: J. Phys. A 51.29 (2018), p. 295202.

THANK YOU!

Questions?

[^0]: Institute for Theoretical Physics, Leibniz University Hannover Institute of Physics, Humboldt University Berlin

