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Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

We use similar techniques to obtain novel Yang–Mills solutions [Hir+23], albeit for the
non-compact cousin of SU(2) i.e. SU(1,1).

Strategy: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the previous

I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is needed to cover full Minkowski space.
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Recap: dS4
conformal−−−−−→ R1,3

Two conformal avatars of dS4 [KL20] with common S2-metric
dΩ2

2 = dθ2 + sin2θdϕ2 (θ ∈ [0, π] & ϕ ∈ [0, 2π]):

ds2 = R2

sin2τ

(
−dτ 2 + dχ2 + sin2χdΩ2

2
)

S3-cyl

= R2

t2
(
−dt2 + dr2 + r2dΩ2

2
)

Mink ,
(1)

where τ ∈ I := (−π/2, π/2), χ ∈ [0, π], t ∈ R+ & r ∈ R+.

Effective map: (t, r)↔ (τ, χ) with constraint χ > |τ |:

t
R = sin τ

cos τ − cosχ ,
r
R = sinχ

cos τ − cosχ . (2)

To recover full Minkowski space, extend τ to Ĩ := (−π, π);
glue two dS4 copies at t=τ=0. See Penrose diagram on right.

K.Kumar (HU-Berlin) Geometrical setting Recap: dS4
conformal

−−−−−−→ R1,3
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AdS4
conformal−−−−−→ R1,3

Consider following two conformal versions of AdS4,

ds2 = R2

cos2ψ

(
dψ2 − cosh2ρ dτ 2 + dρ2 + sinh2ρdϕ2)

AdS3-cyl

= R2

cos2χ

(
−dτ 2 + dχ2 + sin2χdΩ2

2
)

S3
+-cyl

(3)

where ψ ∈ I ≡ (−π/2, π/2), ρ ∈ R+, ϕ, τ ∈ S1, but χ ∈ [0, π/2).

Need to glue two AdS4 copies—this time sideways—to recover full Minkowski space; can
be achieved in two steps:

1. Join S3
+ (ε= + 1, χ < π

2 ) with S3
− (ε= − 1, χ > π

2 ) along the equatorial S2 via

tanh ρ = ε sin θ sinχ, tanψ = −ε cos θ tanχ (4)

2. Use previous (τ, χ) → (t, r) to get Minkowski coordinates; effectively, (τ, ρ, ψ) Conf .−−−→ (t, r , θ).

Caveat: singularity encountered @boundary χ=π
2 , which is r2−t2=R2.

K.Kumar (HU-Berlin) Geometrical setting AdS4
conformal
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Figure 1: Gluing of two AdS4 (across dashed line) to reveal full Minkowski space with the lightcone
@origin (red). Left: Penrose diagram of (τ, χ) space with constant t- (blue) and r -slices (brown).
Right: Minkowski space of (t, r) coordinates with constant (blue) τ - and (brown) χ-slices.
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SU(1, 1) Lie algebra and one-forms

AdS3 ∋ (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
∈ SU(1, 1) group manifold (5)

Can obtain the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; [Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ (6)

with f 2
01 = f 1

20 = −f 0
12 = 1 for sl(2,R) generators Iα and (ηαβ) = diag(−1, 1, 1). Moreover,

Cartan deα + f αβγ eβ ∧ eγ = 0 and ds2
cyl = dψ2 + ηαβ eαeβ ON-frame (7)

A generic gauge field A in this frame can be made SU(1, 1)-symmetric by,

A = Aψ eψ +Aα eα Aψ=0−−−−→ A = Xα(ψ) eα

=⇒ F = dA+A ∧A = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ .

(8)

Gauss-law constraint [Xα,X
′

α] = 0 of the eom ∗d ∗ F = 0 can be readily satisfied for

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (9)

K.Kumar (HU-Berlin) Yang–Mills on AdS4 SU(1, 1) Lie algebra and one-forms



YangMillsAdS4 9/18 QTS12

AdS3 ∋ (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
∈ SU(1, 1) group manifold (5)

Can obtain the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; [Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ (6)

with f 2
01 = f 1

20 = −f 0
12 = 1 for sl(2,R) generators Iα and (ηαβ) = diag(−1, 1, 1).

Moreover,

Cartan deα + f αβγ eβ ∧ eγ = 0 and ds2
cyl = dψ2 + ηαβ eαeβ ON-frame (7)

A generic gauge field A in this frame can be made SU(1, 1)-symmetric by,

A = Aψ eψ +Aα eα Aψ=0−−−−→ A = Xα(ψ) eα

=⇒ F = dA+A ∧A = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ .

(8)

Gauss-law constraint [Xα,X
′

α] = 0 of the eom ∗d ∗ F = 0 can be readily satisfied for

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (9)

K.Kumar (HU-Berlin) Yang–Mills on AdS4 SU(1, 1) Lie algebra and one-forms



YangMillsAdS4 9/18 QTS12

AdS3 ∋ (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
∈ SU(1, 1) group manifold (5)

Can obtain the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; [Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ (6)

with f 2
01 = f 1

20 = −f 0
12 = 1 for sl(2,R) generators Iα and (ηαβ) = diag(−1, 1, 1). Moreover,

Cartan deα + f αβγ eβ ∧ eγ = 0 and ds2
cyl = dψ2 + ηαβ eαeβ ON-frame (7)

A generic gauge field A in this frame can be made SU(1, 1)-symmetric by,

A = Aψ eψ +Aα eα Aψ=0−−−−→ A = Xα(ψ) eα

=⇒ F = dA+A ∧A = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ .

(8)

Gauss-law constraint [Xα,X
′

α] = 0 of the eom ∗d ∗ F = 0 can be readily satisfied for

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (9)

K.Kumar (HU-Berlin) Yang–Mills on AdS4 SU(1, 1) Lie algebra and one-forms



YangMillsAdS4 9/18 QTS12

AdS3 ∋ (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
∈ SU(1, 1) group manifold (5)

Can obtain the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; [Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ (6)

with f 2
01 = f 1

20 = −f 0
12 = 1 for sl(2,R) generators Iα and (ηαβ) = diag(−1, 1, 1). Moreover,

Cartan deα + f αβγ eβ ∧ eγ = 0 and ds2
cyl = dψ2 + ηαβ eαeβ ON-frame (7)

A generic gauge field A in this frame can be made SU(1, 1)-symmetric by,

A = Aψ eψ +Aα eα Aψ=0−−−−→ A = Xα(ψ) eα

=⇒ F = dA+A ∧A = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ .

(8)

Gauss-law constraint [Xα,X
′

α] = 0 of the eom ∗d ∗ F = 0 can be readily satisfied for

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (9)

K.Kumar (HU-Berlin) Yang–Mills on AdS4 SU(1, 1) Lie algebra and one-forms



YangMillsAdS4 9/18 QTS12

AdS3 ∋ (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
∈ SU(1, 1) group manifold (5)

Can obtain the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; [Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ (6)

with f 2
01 = f 1

20 = −f 0
12 = 1 for sl(2,R) generators Iα and (ηαβ) = diag(−1, 1, 1). Moreover,

Cartan deα + f αβγ eβ ∧ eγ = 0 and ds2
cyl = dψ2 + ηαβ eαeβ ON-frame (7)

A generic gauge field A in this frame can be made SU(1, 1)-symmetric by,

A = Aψ eψ +Aα eα Aψ=0−−−−→ A = Xα(ψ) eα

=⇒ F = dA+A ∧A = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ .

(8)

Gauss-law constraint [Xα,X
′

α] = 0 of the eom ∗d ∗ F = 0 can be readily satisfied for

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (9)

K.Kumar (HU-Berlin) Yang–Mills on AdS4 SU(1, 1) Lie algebra and one-forms



YangMillsAdS4 10/18 QTS12

The Yang–Mills Langrangian L = 1
4 tr(F ∧ ∗F) computes to,

L = 1
4 trFψαFψα + 1

8 trFβγFβγ

= 1
2

∑
α

(Θ′
α)2 − 2

{
(Θ1−Θ2Θ0)2 + (Θ2−Θ0Θ1)2 + (Θ0−Θ1Θ2)2}

.
(10)

Notice the discrete symmetry of the permutation group S4, acting by permuting {Θα} and
flipping the sign of any two. Its maximal normal subgroups S3 and D8 yields exact solutions:

Non-equivariant Abelian ansatz:

Θ0 = h(ψ) while Θ1 = Θ2 = 0 ,
=⇒ h′′ = −4 h

Equivariant non-Ablian ansatz:

Θ0 = Θ1 = Θ2 =: 1
2
(
1 + Φ(ψ)

)
=⇒ Φ

′′
= 2 Φ (1− Φ2) = −∂V

∂Φ

-2 -1 1 2

Φ
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Non-Abelian solution
Using (τ, ρ, ψ)→ (τ, χ, θ)→ (t, r , θ) for R=1 along with abbreviations x · dx := xµdxµ,
ε1 = ε2 := ε and ε0 := 1 we can write the Minkowski one-forms in a compact form as,

eα = εα

λ2+4z2

(
2(λ+2) dxα − 4xα x · dx − 4 f αβγ xβdxγ

)
,

eψ = ε
λ2+4z2

(
−2λ dz + 4z x · dx

)
, where λ := r2 − t2 − 1 .

(11)

Fields are obtained from the field strength F of A ≡ A = 1
2

(
1 + Φ

(
ψ(x)

))
Iα eαµ dxµ,

F = 1
2

(
Φ′(ψ(x)

)
Iα eψµeαν − 1

2
(
1−Φ

(
ψ(x)

)2)
Iα f αβγ eβµeγν

)
dxµ ∧ dxν : (12)

Color EM fields in terms of Riemann–Silberstein vector S⃗ := E⃗ + iB⃗:

Sx = − 2(iεΦ′+Φ2−1)
(λ−2iz)(λ+2iz)2

{
2
[
ty+ix(z+i)

]
I0 + 2ε

[
xy+it(z+i)

]
I1 + ε

[
t2−x2+y2+(z+i)2]

I2
}

Sy = 2(iεΦ′+Φ2−1)
(λ−2iz)(λ+2iz)2

{
2
[
tx−iy(z+i)

]
I0 + ε

[
t2+x2−y2+(z+i)2]

I1 + 2ε
[
xy−it(z+i)

]
I2

}
Sz = 2(iεΦ′+Φ2−1)

(λ−2iz)(λ+2iz)2

{
i
[
t2+x2+y2−(z+i)2]

I0 + 2ε
[
itx−y(z+i)

]
I1 + 2ε

[
ity+x(z+i)

]
I2

}

K.Kumar (HU-Berlin) Exact gauge fields Non-Abelian solution
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The corresponding stress-energy tensor

Tµν = − 1
2g2

(
δ ρµ δ

λ
ν η

στ − 1
4ηµνη

ρληστ
)

tr
(
FρσFλτ

)
(13)

also takes a nice compact form as
(
ϵ := − 1

4
(
(Φ′)2 + (1−Φ2)2))

(
Tµν

)
= 8

g2
ϵ

(λ2+4z2)3

(
tαβ tα3
t3α t33

)
with


tαβ = −ηαβ(λ2+4z2) + 16xαxβz2 ,

t3α = tα3 = −8xαz (λ−3z2) ,
t33 = 3λ2 − 4z2(1 + 4λ− 4z2)

(14)

The fields E⃗ , B⃗ and Tµν are singular at the intersection of λ=0 hyperbola H1,2 and z=0-plane.

Figure 3: Plots for the energy
density ρ ∝ (λ2+4z2)−2|t=0.
Left: Level sets for the values
10 (orange), 100 (cyan), and
1000 (brown). Right: Density
plot emphasizing the maxima.
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Abelian solution
Same field expression across the hyperbola λ=0; choose Ã = − 1

2 cos 2
(
ψ(x)+εψ0

)
e0
µ dxµ:

F̃ =
{

sin 2
(
ψ(x)+εψ0

)
eψµe0

ν − cos 2
(
ψ(x)+εψ0

)
e1
µe2

ν

}
dxµ ∧ dxν . (15)

RS-vector reminiscent of the Hopf–Ranãda knot

⃗̃E + i⃗̃B = 4e2iψ0

(λ+2iz)3

 −2
(
t y + ix (z+i)

)
2

(
t x − iy (z+i)

)
i
(
t2 + x2 + y2 − (z+i)2)


A limiting case ψ0=z=0 reproduces the
magnetic field of a magnetic vortex [RS18].
Typical electric (red) and magnetic (green)
field lines on right for t=10, ψ0=π

2 inside
r=
√

101. The fields diverge at the (black)
singular equatorial circle: λ=0

⋂
z=0

⋂
t=10.
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Conclusion

First, we employed the AdS3-slicing of AdS4 and the group manifold structure of SU(1, 1)
to find Yang–Mills solutions on I × AdS3.

Next, we used a series of conformal maps to transfer these solutions to Minkoowsi space,
since Yang–Mills theory is conformally invariant in 4-dimensions.

These gauge fields are singular on a 2-dimensional hyperboloid x2+y2−t2 = 1, but this
singularity is milder than the one we started with, namely r2−t2−1 = 0.

Due to this singularity the total energy diverges for both kinds of gauge fields, thereby
limiting their physical usefulness.

Nevertheless, our Abelian solutions were found to match the magnetic field of a known
vortex magnetic mode on SU(1, 1) [RS18]. What about the other two Abelian solutions?
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THANK YOU!

Questions?

K.Kumar (HU-Berlin) Conclusion
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