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Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

Here we will a employ similar technique to obtain novel Yang–Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

For us the strategy would be: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the

previous I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is used to cover the full Minkowski space.

K.Kumar (ITP-Hannover) Introduction



YangMillsAdS4 3/22 ESI-talk

Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

Here we will a employ similar technique to obtain novel Yang–Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

For us the strategy would be: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the

previous I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is used to cover the full Minkowski space.

K.Kumar (ITP-Hannover) Introduction



YangMillsAdS4 3/22 ESI-talk

Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

Here we will a employ similar technique to obtain novel Yang–Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

For us the strategy would be: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the

previous I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is used to cover the full Minkowski space.

K.Kumar (ITP-Hannover) Introduction



YangMillsAdS4 3/22 ESI-talk

Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

Here we will a employ similar technique to obtain novel Yang–Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

For us the strategy would be: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the

previous I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is used to cover the full Minkowski space.

K.Kumar (ITP-Hannover) Introduction



YangMillsAdS4 3/22 ESI-talk

Introduction

In a 2017 paper [ILP17] SU(2) Yang–Mills solutions, found originally by Lüscher in 1977
[Lüs77], were rederived using conformal structures of dS4.

The strategy employed in [ILP17] was: I × S3 conformal←−−−−− dS4
conformal−−−−−→ R1,3 for

I = (−π2 ,
π
2 ) along with the fact that S3 is the group manifold of SU(2).

Here we will a employ similar technique to obtain novel Yang–Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

For us the strategy would be: I ×AdS3
conformal←−−−−− AdS4

conformal−−−−−→ I × S3
+ followed by the

previous I × S3 conformal−−−−−→ R1,3 and noting that AdS3 is the group manifold of SU(1,1).

In both cases, gluing of two copies of dS4/AdS4 is used to cover the full Minkowski space.

K.Kumar (ITP-Hannover) Introduction



YangMillsAdS4 4/22 ESI-talk

Table of Contents

1 Introduction

2 Geometrical setting
Recap: dS4

conformal−−−−−→ R1,3

AdS4
conformal−−−−−→ R1,3

3 Yang–Mills on AdS4
SU(1, 1) Lie algebra and one-forms
The (non-)equivariant ansatz

4 Exact gauge fields
Non-Abelian solution
Abelian solution

5 Conclusion

K.Kumar (ITP-Hannover) Geometrical setting



YangMillsAdS4 5/22 ESI-talk

Recap: dS4
conformal−−−−−→ R1,3

It is well known that dS4, seen an an embedding in R1,4 via

−(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 = R2 , (1)

is conformal to both Minkowski space and an S3-cylinder.

This is evident from its flat metric in
appropriate (polar) coordinate patches with common S2-metric dΩ2

2 = dθ2 + sin2θdϕ2:

ds2 = R2

sin2τ

(
−dτ 2 + dχ2 + sin2χdΩ2

2
)

= R2

sin2τ

(
−dτ 2 + dΩ2

3
)

= R2

t2
(
−dt2 + dr2 + r2dΩ2

2
)

= R2

t2
(
−dt2 + dx2 + dy2 + dz2) (2)

where τ ∈ I := (−π/2, π/2), χ ∈ [0, π], t ∈ R+ & r ∈ R+. Notice that this only covers
future half of the Minkowski space! This is due to the following constraint:

cos τ > cosχ ⇐⇒ χ > |τ | . (3)
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S2 coordinates θ ∈ [0, π] & ϕ ∈ [0, 2π]
identified on both sides.

Effective map: (t, r)↔ (τ, χ)

t
R = sin τ

cos τ − cosχ ,

r
R = sinχ

cos τ − cosχ .

(4)

To cover entire Minkowski space, we
extend domain of τ to Ĩ := (−π, π).
This amounts to gluing two dS4 copies at
t=τ=0, half of which covers the full
Minkowski space.
This is clearly deomnstrated with the
(τ, χ) Penrose diagram on the right with
t- and r -slices.
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AdS4
conformal−−−−−→ R1,3

We can isometrically embed AdS4 inside R2,3 as

−(x1)2 − (x2)2 + (x3)2 + (x4)2 + (x5)2 = −R2 . (5)

Here too this takes two useful conformal avatars, easily seen from its flat-metric:

ds2 = R2

cos2ψ

(
dψ2 − cosh2ρdτ 2 + dρ2 + sinh2ρdϕ2)

= R2

cos2ψ

(
dψ2 + dΩ2

1,2
)

= R2

cos2χ

(
−dτ 2 + dχ2 + sin2χdΩ2

2
)

= R2

cos2χ

(
−dτ 2 + dΩ2

3+
) (6)

where ψ ∈ I ≡ (−π/2, π/2), ρ ∈ R+, ϕ, τ ∈ S1, but χ ∈ [0, π/2]. Thus, we get cylinders
(a) over (half of) the 3-sphere S3, and
(b) over AdS3 ∼= SU(1, 1)/{±id} with metric dΩ1,2.

K.Kumar (ITP-Hannover) Geometrical setting AdS4
conformal

−−−−−−→ R1,3
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Here the S3
+-structure is, in fact, nothing but a conformal compactification of H3. To see this,

let us change coordinates (ρ, ψ)→ (λ, θ) ∈ R+×[0, π] in (6) via

tanh ρ = sin θ tanhλ and tanψ = − cos θ sinhλ
=⇒ ds2 = R2(

− cosh2λ dτ 2 + dλ2 + sinh2λ dΩ2
2
)
.

(7)

Again, we need to glue two AdS4 copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

Joining two H3-slices while keeping τ fixed. Equivalently, this means gluing two
S3-hemispheres, namely S3

+ and S3
−, along the equatorial S2:

tanh ρ = sin θ tanhλ = ε sin θ sinχ & tanψ = −ε cos θ sinhλ = −ε cos θ tanχ

where
{
ε = +1 : ρ, λ ∈ R+ , χ ∈ [0, π2 ) ⇔ northern hemisphere S3

+

ε = −1 : ρ, λ ∈ R− , χ ∈ (π2 , π] ⇔ southern hemisphere S3
−

(8)

Use the previous (τ, χ)→ (t, r) map to get to the Minkowski space.
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This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:{
ψ=± π

2
}

=
{
λ=±∞

}
=

{
χ=π

2
}

⇐⇒
{

r2−t2=R2}
=: H1,2

R
∼= dS3 ∼= Iτ × S2∣∣

bdy .
(9)

One needs to be careful of the orientation of two two copies at the boundary as shown below

P1=P6[N]

P2 P3

P4P5

ψ

ρ
−π

2

π
2

0 ∞

[N]

P1 P2

P3=P4
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Figure 1: Gluing S+
3 (yellow shaded region) to S−

3 (orange shaded region) along the (dashed) boundary.
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Figure 2: Gluing of two AdS4 to reveal the full Minkowski space with the lightcone (red). Left: (τ, χ)
AdS4 space (two copies) yielding the Penrose diagram with constant t- (blue) and r -slices (brown).
Right: (t, r) Minkowski space with boundary hyperbola H1,2

R (dashed) and constant τ - (blue) and
χ-slices (brown).
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SU(1, 1) Lie algebra and one-forms
We start by noticing that AdS3 is the group manifold of SU(1, 1):

g : AdS3 → SU(1, 1) via (y1, y2, y3, y4) 7→
(

y1−iy2 y3−iy4

y3+iy4 y1+iy2

)
. (10)

This map also yields the left-invariant one-forms eα, α = 0, 1, 2 via Maurer–Cartan method:

ΩL(g) = g−1dg = eα Iα ; I0 =
(
−i 0
0 i

)
, I1 =

(
0 1
1 0

)
, I2 =

(
0 −i
i 0

)
, (11)

where the sl(2,R) generators Iα of PSL(2,R) ∼= SU(1, 1)/{±id} are subject to

[Iα, Iβ] = 2 f γαβ Iγ and tr(Iα Iβ) = 2 ηαβ with (ηαβ) = diag(−1, 1, 1) , (12)

and f 2
01 = f 1

20 = −f 0
12 = 1. Explicitly, we get the following one-forms on AdS3

e0 = cosh2ρ dτ + sinh2ρ dϕ ,
e1 = cos (τ−ϕ) dρ+ sinh ρ cosh ρ sin (τ−ϕ) d(τ+ϕ) ,
e2 = − sin (τ−ϕ) dρ+ sinh ρ cosh ρ cos (τ−ϕ) d(τ+ϕ) .

(13)
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The (non-)equivariant ansatz
These one-forms eα satisfy following Cartan structure equation

deα + f αβγ eβ ∧ eγ = 0 (14)

and provide a local orthonormal frame on the cylinder I × AdS3:

ds2
cyl = dψ2 + ηαβ eαeβ =: (eψ)2 − (e0)2 + (e1)2 + (e2)2 . (15)

A generic gauge field in this frame is given by

A = Aψ eψ +Aα eα , (16)

which can be made SU(1, 1)-symmetric by setting Aψ = 0, so that F = dA+A ∧A becomes

A = Xα(ψ) eα =⇒ F = X
′

α eψ ∧ eα + 1
2
(
−2f αβγXα + [Xβ ,Xγ ]

)
eβ ∧ eγ . (17)

Moreover, to satisfy the Gauss-law constraint [Xα,X
′

α] = 0 (from eom: ∗d ∗ F = 0) we chose

X0 = Θ0(ψ) I0 , X1 = Θ1(ψ) I1 , X2 = Θ2(ψ) I2 . (18)
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This gives us the following Yang–Mills Langrangian

L = 1
4 trFψαFψα + 1

8 trFβγFβγ

= 1
2
{

(Θ′
1)2 + (Θ′

2)2 + (Θ′
0)2}

− 2
{

(Θ1−Θ2Θ0)2 + (Θ2−Θ0Θ1)2 + (Θ0−Θ1Θ2)2}
,

(19)
which enjoys a discrete symmetry of the permutation group S4, which acts by permuting three
fields and flipping the sign of any two fields.

Two maximal normal subgroups of S4, namely S3
(non-Abelian) and D8 (Abelian), yields interesting solutions as follows.

Non-equivariant Abelian ansatz:

Θ0 = h(ψ) while Θ1 = Θ2 = 0 ,
=⇒ h′′ = −4 h

Equivariant non-Ablian ansatz:

Θ0 = Θ1 = Θ2 =: 1
2
(
1 + Φ(ψ)

)
=⇒ Φ

′′
= 2 Φ (1− Φ2) = −∂V

∂Φ

-2 -1 1 2

Φ

1

2

3

4

V

Figure 3: Potential V (Φ) = 1
2 (Φ2 − 1)2.
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Non-Abelian solution
Using (τ, ρ, ψ)→ (τ, χ, θ)→ (t, r , θ) for R=1 along with abbreviations x · dx := xµdxµ,
ε1 = ε2 := ε and ε0 := 1 we can write the Minkowski one-forms in a compact form as,

eα = εα

λ2+4z2

(
2(λ+2) dxα − 4xα x · dx − 4 f αβγ xβdxγ

)
,

eψ = ε
λ2+4z2

(
−2λ dz + 4z x · dx

)
, where λ := r2 − t2 − 1 .

(20)

Fields are obtained from the field strength F of A ≡ A = 1
2

(
1 + Φ

(
ψ(x)

))
Iα eαµ dxµ,

F = 1
2

(
Φ′(ψ(x)

)
Iα eψµeαν − 1

2
(
1−Φ

(
ψ(x)

)2)
Iα f αβγ eβµeγν

)
dxµ ∧ dxν : (21)

Color EM fields in terms of Riemann–Silberstein vector S⃗ := E⃗ + iB⃗:

Sx = − 2(iεΦ′+Φ2−1)
(λ−2iz)(λ+2iz)2

{
2
[
ty+ix(z+i)

]
I0 + 2ε

[
xy+it(z+i)

]
I1 + ε

[
t2−x2+y2+(z+i)2]

I2
}

Sy = 2(iεΦ′+Φ2−1)
(λ−2iz)(λ+2iz)2

{
2
[
tx−iy(z+i)

]
I0 + ε

[
t2+x2−y2+(z+i)2]

I1 + 2ε
[
xy−it(z+i)

]
I2

}
Sz = 2(iεΦ′+Φ2−1)

(λ−2iz)(λ+2iz)2

{
i
[
t2+x2+y2−(z+i)2]

I0 + 2ε
[
itx−y(z+i)

]
I1 + 2ε

[
ity+x(z+i)

]
I2

}
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The corresponding stress-energy tensor

Tµν = − 1
2g2

(
δ ρµ δ

λ
ν η

στ − 1
4ηµνη

ρληστ
)

tr
(
FρσFλτ

)
(22)

also takes a nice compact form as
(
ϵ := − 1

4
(
(Φ′)2 + (1−Φ2)2))

(
Tµν

)
= 8

g2
ϵ

(λ2+4z2)3

(
tαβ tα3
t3α t33

)
with


tαβ = −ηαβ(λ2+4z2) + 16xαxβz2 ,

t3α = tα3 = −8xαz (λ−3z2) ,
t33 = 3λ2 − 4z2(1 + 4λ− 4z2)

(23)

The fields E⃗ , B⃗ and Tµν are singular at the intersection of λ=0 hyperbola H1,2 and z=0-plane.

Figure 4: Plots for the energy
density ρ ∝ (λ2+4z2)−2|t=0.
Left: Level sets for the values
10 (orange), 100 (cyan), and
1000 (brown). Right: Density
plot emphasizing the maxima.
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Abelian solution
For the Abelian case we judiciously chose h(ψ) to obtain same fields on both sides of H1,2,

Ã = − 1
2 cos 2

(
ψ(x)+εψ0

)
e0
µ dxµ and

F̃ =
{

sin 2
(
ψ(x)+εψ0

)
eψµe0

ν − cos 2
(
ψ(x)+εψ0

)
e1
µe2

ν

}
dxµ ∧ dxν .

(24)

RS-vector reminiscent of the Hopf–Ranãda knot

⃗̃E + i⃗̃B = 4e2iψ0

(λ+2iz)3

 −2
(
t y + ix (z+i)

)
2

(
t x − iy (z+i)

)
i
(
t2 + x2 + y2 − (z+i)2)


On the right we show typical electric (red) and mag-
netic (green) field lines for t=10 and ψ0=π

2 inside
the boundary sphere r=

√
101. The fields diverge at

the (black) singular equatorial circle.

K.Kumar (ITP-Hannover) Exact gauge fields Abelian solution



YangMillsAdS4 18/22 ESI-talk

For the Abelian case we judiciously chose h(ψ) to obtain same fields on both sides of H1,2,
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2 cos 2

(
ψ(x)+εψ0

)
e0
µ dxµ and

F̃ =
{

sin 2
(
ψ(x)+εψ0

)
eψµe0

ν − cos 2
(
ψ(x)+εψ0

)
e1
µe2

ν

}
dxµ ∧ dxν .

(24)

RS-vector reminiscent of the Hopf–Ranãda knot

⃗̃E + i⃗̃B = 4e2iψ0

(λ+2iz)3

 −2
(
t y + ix (z+i)

)
2

(
t x − iy (z+i)

)
i
(
t2 + x2 + y2 − (z+i)2)



On the right we show typical electric (red) and mag-
netic (green) field lines for t=10 and ψ0=π

2 inside
the boundary sphere r=

√
101. The fields diverge at

the (black) singular equatorial circle.
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Ã = − 1
2 cos 2

(
ψ(x)+εψ0

)
e0
µ dxµ and

F̃ =
{

sin 2
(
ψ(x)+εψ0

)
eψµe0

ν − cos 2
(
ψ(x)+εψ0

)
e1
µe2

ν

}
dxµ ∧ dxν .

(24)

RS-vector reminiscent of the Hopf–Ranãda knot

⃗̃E + i⃗̃B = 4e2iψ0

(λ+2iz)3

 −2
(
t y + ix (z+i)

)
2

(
t x − iy (z+i)

)
i
(
t2 + x2 + y2 − (z+i)2)


On the right we show typical electric (red) and mag-
netic (green) field lines for t=10 and ψ0=π

2 inside
the boundary sphere r=

√
101. The fields diverge at

the (black) singular equatorial circle.

K.Kumar (ITP-Hannover) Exact gauge fields Abelian solution



YangMillsAdS4 19/22 ESI-talk

Table of Contents

1 Introduction

2 Geometrical setting
Recap: dS4

conformal−−−−−→ R1,3

AdS4
conformal−−−−−→ R1,3

3 Yang–Mills on AdS4
SU(1, 1) Lie algebra and one-forms
The (non-)equivariant ansatz

4 Exact gauge fields
Non-Abelian solution
Abelian solution

5 Conclusion

K.Kumar (ITP-Hannover) Conclusion



YangMillsAdS4 20/22 ESI-talk

Conclusion

First, we employed the AdS3-slicing of AdS4 and the group manifold structure of SU(1, 1)
to find Yang–Mills solutions on I × AdS3.

Next, using the AdS4 → R1,3 conformal map via AdS3- and S3-cylinders, we obtained
Minkowski solutions since the Yang–Mills theory is invariant in 4-dimensions.

These gauge fields are singular on a 2-dimensional hyperboloid x2+y2−t2 = 1, but this
singularity is milder than the one we started with i.e. λ := r2−t2−1 = 0.

Due to this singularity the total energy diverges for both kinds of gauge fields.

Indeed, it is difficult to justify these solutions on physical grounds, but they could be relevant
in some supergravity or super Yang–Mills theories.

Similar looking solutions were also found before using vortex equations and Dirac fields on
AdS4 [RS18]; it would be interesting to see how these solutions are related.
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THANK YOU!

Questions?
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