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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Liischer in 1977
[Lus77], were rederived using conformal structures of dS,.
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@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Liischer in 1977
[Lus77], were rederived using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for
7 = (—%,%) along with the fact that S* is the group manifold of SU(2).
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@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Liischer in 1977
[Lus77], were rederived using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for
7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang—Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Liischer in 1977
[Lus77], were rederived using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for
7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang—Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

@ For us the strategy would be: Z x AdS; conformal AdS, conformal, 7 5J3r followed by the
previous Z x S3 conformal, 1.3 and noting that AdSs; is the group manifold of SU(1,1).
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Introduction

@ In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Liischer in 1977
[Lus77], were rederived using conformal structures of dS,.

e The strategy employed in [ILP17] was: T x S3 conformal dS, conformal, 213 for

7 = (—%,%) along with the fact that S* is the group manifold of SU(2).

@ Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23],
albeit for the non-compact case i.e. SU(1,1).

@ For us the strategy would be: Z x AdS; conformal AdS, conformal, 7 543_ followed by the
previous Z x §3 2203, R1.3 and noting that AdSs is the group manifold of SU(1,1).

@ In both cases, gluing of two copies of dS;/AdS, is used to cover the full Minkowski space.
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@ Recap: dS, conformal, 1.3

° AdS4 conformal Rl’?’
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B
Recap: dS, <onormal, 13

It is well known that dS,, seen an an embedding in RY* via
—(X0)2+(X1)2+(X2)2+(X3)2+(X4)2 — R2,

is conformal to both Minkowski space and an S3-cylinder.
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It is well known that dSy, seen an an embedding in RY* via
—(OP + O+ (PP + (O + () = R, (1)

is conformal to both Minkowski space and an S3-cylinder. This is evident from its flat metric in
appropriate (polar) coordinate patches with common S2-metric dQ3 = d#? + sin®4d¢?:

R? R?
ds? = — 5 (—d7'2 +dy® + sin2de§) = — (—dT2 + dQ%)
sin“T sin“T
A ) (2)
R R

= (=dt*> +dr* 4 r?dQ3) = = (—dt? + dx® + dy? + d2°)

where 7 € T := (—7/2,7/2), x € [0,7], t e Ry & r € R,
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It is well known that dSy, seen an an embedding in RY* via
—(OP + O+ (PP + (O + () = R, (1)

is conformal to both Minkowski space and an S3-cylinder. This is evident from its flat metric in
appropriate (polar) coordinate patches with common S2-metric dQ3 = d#? + sin®4d¢?:

R? R?
ds? = — 5 (—d7'2 +dy® + sin2de§) = — (—dT2 + dQ%)
sin“T sin“T
A ) (2)
R R

= (=dt*> +dr* 4 r?dQ3) = = (—dt? + dx® + dy? + d2°)

where 7 € T := (—7/2,7/2), x € [0,7], t € Ry & r € R;. Notice that this only covers
future half of the Minkowski space! This is due to the following constraint:

cosT >cosy <= x>|7|. (3)
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@ 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.
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@ 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.

o Effective map: (t,r) + (7, %)

sinT

cosT —cosy
sin x (4)

COST — COS)

o~ D~
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e 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.

o Effective map: (t,r) + (7, %)

sinT

cosT —cosy
sin x
COST — COS)

(4)

o~ D~

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).
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e 52 coordinates 6 € [0, 7] & ¢ € [0, 27]
identified on both sides.

o Effective map: (t,r) + (7, %)

sinT
cosT —cosy

sin x
COST — COS)

(4)

o~ D~

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).

@ This amounts to gluing two dS4 copies at
t=7=0, half of which covers the full
Minkowski space.
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e 52 coordinates 0 € [0,7] & ¢ € [0,27] T +
identified on both sides.

o Effective map: (t,r) + (7, %)

ﬂ+
sinT

cosT —cosy
sin x
COST — COS)

(4)

D~ D~

@ To cover entire Minkowski space, we
extend domain of 7 to Z := (—m, 7).

@ This amounts to gluing two dS,4 copies at
t=7=0, half of which covers the full
Minkowski space.

@ This is clearly deomnstrated with the
(7, x) Penrose diagram on the right with - + i
t- and r-slices. ’ X
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AdS4 conformal R1’3

We can isometrically embed AdS4 inside R%3 as

7(X1)2 o (X2)2 + (X3)2 + (X4)2 + (X5)2
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We can isometrically embed AdS, inside R%3 as
_(X1)2 o (X2)2 4 (X3)2 + (X4)2 4 (X5)2 _ _R2 .

Here too this takes two useful conformal avatars, easily seen from its flat-metric:

R2
P (dy? — cosh®pdr? + dp? + sinh’pd¢?) =
2

2
ds® =

cos?p (dv? +dQ7,) 6
2
(=d7? + dx® +sin®x dQ3) = C(%X (—dr* +dQ3,)

where ¢ € Z = (—7/2,7/2), p € Ry, ¢,7 € St, but x € [0,7/2].

cos?y
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We can isometrically embed AdS, inside R%3 as

~(R = (PP + (P (6 + (P = R (5)
Here too this takes two useful conformal avatars, easily seen from its flat-metric:
2 R? 2 2 12 2 2, 1,2 ? 2 2
ds® = P (d® — cosh®pdr? + dp® + sinh?pd¢?) = o) (dyp? 4 dQ7 ,) o
2 R2
— 2 2, w2 2\ _ 2 2
p—y (—=dr* + dx* +sin®x dQ3) = m(—dﬂ' +dQ3,)

where ¢ € Z = (—7/2,7/2), p € Ry, ¢,7 € St, but x € [0,7/2]. Thus, we get cylinders
(a) over (half of) the 3-sphere S3, and

(b) over AdS3 = SU(1,1)/{+id} with metric d€; ».
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Here the Si—structure is, in fact, nothing but a conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and tany = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

K Kumar  (ITP-Hannover) (et s il



Here the Si—structure is, in fact, nothing but a conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via
tanhp = sinf tanh A and tany = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS,; copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:
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Here the Si—structure is, in fact, nothing but a conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via

tanhp = sinf tanh A and tany = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS,; copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

@ Joining two H3-slices while keeping 7 fixed. Equivalently, this means gluing two
S3-hemispheres, namely S3 and S3, along the equatorial 5%

tanhp =sinf tanhA = e sinf siny & tanvy = —e cosf sinh A = —¢ cosf tanx

L e=+1: pAeRy, x€[0,5) < northern hemisphere s3 (8)
where
e=-1: pAeR_, xe(5,mn] < southern hemisphere s?
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Here the Si—structure is, in fact, nothing but a conformal compactification of H3. To see this,
let us change coordinates (p, 1) — (A, 0) € Ry x[0,x] in (6) via

tanhp = sinf tanh A and tany = —cosf sinh A

7
= ds® = R?(—cosh®Adr? + d\? + sinh®AdQ3) . ")

Again, we need to glue two AdS,; copies—this time sideways though—to cover entire
Minkowski space! This we achieve in two steps:

@ Joining two H3-slices while keeping 7 fixed. Equivalently, this means gluing two
S3-hemispheres, namely S3 and S3, along the equatorial 5%

tanhp =sinf tanhA = e sinf siny & tanvy = —e cosf sinh A = —¢ cosf tanx

L e=+1: pAeRy, x€[0,5) < northern hemisphere s3 (8)
where
e=-1: pAeR_, xe(5,mn] < southern hemisphere s?

@ Use the previous (7, x) — (t,r) map to get to the Minkowski space.
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This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

{v=%3} = {d=to0} = {x=3} )
— {P—t?=R?} = Hg” = dS; = Zr % S%yqy -
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This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

{v=%3} = {d=to0} = {x=3} )
— {P—t?=R?} = Hg” = dS; = Zr % S%yqy -

One needs to be careful of the orientation of two two copies at the boundary as shown below

Ps P 1P} P,
0 ‘

N\ P4=P,$P}=P) N

Py P, P 4
0 undefined by 0 Ps=P; z m

Figure 1: Gluing S (yellow shaded region) to S; (orange shaded region) along the (dashed) boundary.
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Figure 2: Gluing of two AdSs to reveal the full Minkowski space with the lightcone (red). Left: (7, x)
AdS; space (two copies) yielding the Penrose diagram with constant t- (blue) and r-slices (brown).
Right: (t, r) Minkowski space with boundary hyperbola Hy? (dashed) and constant 7- (blue) and

x-slices (brown).
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© Yang—Mills on AdS,
@ SU(1,1) Lie algebra and one-forms
@ The (non-)equivariant ansatz
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SU(1,1) Lie algebra and one-forms
We start by noticing that AdSs; is the group manifold of SU(1, 1):

1.2 3 .4
. : 1.2 .3 4 y -y y -y
g: AdSz — SU(1,1)  via  (y,y%y",y") = <y3+iy4 yl_Hyz) . (10)
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We start by noticing that AdSs; is the group manifold of SU(1, 1):

1_:2 3_: 4

. : 1,2 .3 4 y -y -y
g: AdS; — SU(L, 1)  via  (y,y5y'y') = <y3+iy4 y1+iy2> (10)
This map also yields the left-invariant one-forms e, a = 0,1,2 via Maurer—Cartan method:

, o —-i 0 01 0 —i

QL(g) = g 1dg = € /Oz; /0 = (O 1) ) Il = (1 O) ) I2 = <1 0) ) (11)

where the sl(2,R) generators I, of PSL(2,R) = SU(1,1)/{£id} are subject to
(o, Ig] = 2f751, and

tr(la Ig) = 2nap with  (na.p) = diag(—1,1,1) , (12)
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We start by noticing that AdSs; is the group manifold of SU(1, 1):

yt—iy? y3iy4> C (0)

: . 1 .2 3 4
g: AdS; — SU(1,1) via hysyy') = <y3+iy4 yitiy?

This map also yields the left-invariant one-forms e, a = 0,1,2 via Maurer—Cartan method:

_ N -i 0 01 0 —i
QL(g) = g 1dg = € /O‘; /0 = (Ol 1) ) I]- = (1 O) ) I2 = <1 01> ) (11)

where the sl(2,R) generators I, of PSL(2,R) = SU(1,1)/{£id} are subject to
[loy I5] = 2 flﬂ Ly and tr(la Ig) = 2nap with  (na.p) = diag(—1,1,1) , (12)
and 2, = f5, = —f9, = 1. Explicitly, we get the following one-forms on AdS;

e® = cosh?p dr +sinh?p d¢ |
e! = cos(7—¢) dp +sinhp coshp sin(7—¢) d(74+¢) , (13)
e’ = —sin(7—¢) dp +sinhp coshp cos (r—¢) d(7+) .
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The (non-)equivariant ansatz
These one-forms e satisfy following Cartan structure equation
de® + %, e NeT =0

and provide a local orthonormal frame on the cylinder Z x AdSs:

dsty = dY? +asee” = (") — () + (¢') + ()7 .

K Kumar  (ITP-Hannover) S T—e e
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These one-forms e® satisfy following Cartan structure equation
de® + %, e NeT=0 (14)
and provide a local orthonormal frame on the cylinder Z x AdSs:
dsc2yl = dy?® + Mo el = (e¥)? — (e%)% + (e')? + (e%)?. (15)
A generic gauge field in this frame is given by
A= Apel + A, e, (16)
which can be made SU(1, 1)-symmetric by setting A, = 0, so that ¥ = dA + A A A becomes

A = X (1) e — F o= X, " Ne® + 1 (=2f% Xo + [X5, X,]) &® A€V . (17)
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These one-forms e® satisfy following Cartan structure equation
de® + %, efne’=0 (14)
and provide a local orthonormal frame on the cylinder Z x AdSs:
dsc2yl = dy? +napee® = (e¥)? — (%)% + (') + (e%)?. (15)
A generic gauge field in this frame is given by
A= Apel + A, e, (16)
which can be made SU(1, 1)-symmetric by setting A, = 0, so that ¥ = dA + A A A becomes
A = X, (1) e — F o= X, " Ne® + 1 (=2f% Xo + [X5, X,]) &® A€V . (17)
Moreover, to satisfy the Gauss-law constraint [X,, X,] = 0 (from eom: xd % F = 0) we chose

Xo=600(¥) o, Xe=01()h, Xo=02)h . (18)
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This gives us the following Yang—Mills Langrangian

L = MFpoF" + 20T, F7

= 3{(01)*+(92)* +(©5)*} — 2{(©1-0200)” + (©2-0001)* + (00 —©102)*} ,
(19)
which enjoys a discrete symmetry of the permutation group S;, which acts by permuting three
fields and flipping the sign of any two fields.
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This gives us the following Yang—Mills Langrangian

L = MFpoF" + 20T, F7

= (01 + (052 + (0p)%} — 2{(01-0200) + (©2-6001)? + (0p—010,)?} ,
(19)
which enjoys a discrete symmetry of the permutation group S;, which acts by permuting three
fields and flipping the sign of any two fields. Two maximal normal subgroups of S;, namely S3
(non-Abelian) and Dg (Abelian), yields interesting solutions as follows.
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This gives us the following Yang—Mills Langrangian

L = MrFyoF' + ttrFp, F7

= (01 + (052 + (0p)%} — 2{(01-0200) + (©2-6001)? + (0p—010,)?} ,
(19)
which enjoys a discrete symmetry of the permutation group S;, which acts by permuting three
fields and flipping the sign of any two fields. Two maximal normal subgroups of S;, namely S3
(non-Abelian) and Dg (Abelian), yields interesting solutions as follows.

@ Non-equivariant Abelian ansatz:

eo = h(l/)) while @1 = 92 =0 5
= h" = —4h
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This gives us the following Yang—Mills Langrangian
L = MrFyoF' + ttrFp, F7

= (01 + (052 + (0p)%} — 2{(01-0200) + (©2-6001)? + (0p—010,)?} ,
(19)
which enjoys a discrete symmetry of the permutation group S;, which acts by permuting three
fields and flipping the sign of any two fields. Two maximal normal subgroups of S;, namely S3
(non-Abelian) and Dg (Abelian), yields interesting solutions as follows.

@ Non-equivariant Abelian ansatz:

eo = h(l/)) while @1 = 92 =0,
— h” = —4h 2

o Equivariant non-Ablian ansatz:

s = T T ?

Q=01 =0, = (1+9(¥))

o = 20 (1 ¢2) _ _% Figure 3: Potential V/(®) = (¢* — 1)°.
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Non-Abelian solution

Using (7, p,¥) = (7, x,0) — (t,r,0) for R=1 along with abbreviations x - dx := x,dx*,
el = €2 :=¢ and €% := 1 we can write the Minkowski one-forms in a compact form as,
et = ﬁ(;z? (2(A+2) dx™ — 4x* x - dx — 4%, xPdx7) |

20
eV = —2)\dz+4zx-dx), where A = r? —t>—1. (20)

ez

K Kumar  (ITP-Hannover) (Bt e (D e —



Using (T, p,¥) — (7, x,6) — (t, r,0) for R=1 along with abbreviations x - dx := x,dx*,
el =£2:=¢ and €% := 1 we can write the Minkowski one-forms in a compact form as,

e® = ﬁzzz (2()\+2) dx®* —4x“x-dx — 4 f%’v xﬂdx’Y) ,

20
eV = ﬁ(—2)\dz+4zx~dx) , where A = r2—t>2—1. (20)
Fields are obtained from the field strength F of A= A = %(1 + ¢(w(x))) lo €%, dx*,
(0% 2 (6% v
F=3(0@0) luetet, — J1-0(0(x)") ln 3, ehe?, ) dx" Adx” s (21)
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Using (T, p,¥) — (7, x,6) — (t, r,0) for R=1 along with abbreviations x - dx := x,dx*,
el =£2:=¢ and €% := 1 we can write the Minkowski one-forms in a compact form as,

e® = ﬁ(zz? (2()\+2) dx®* —4x“x-dx — 4 f%v xﬁdx'y) ,

20
e’ = iz (20 dz+4zx - dx) where X = r2—t>—1. (20)

Fields are obtained from the field strength F of A= A = %(1 + & ((x ))) lo €%, dx*,
F = 10/ (000) ln e, — L1-0(0()) o 3, e, ) A Adx’ s (21)

Color EM fields in terms of Riemann—Silberstein vector S := E + iB:

5 = g i {2 [ty+ix(z+1)] o + 2e[xy+it(z+1)] h + e[2—x2+y?+(z+i)?] /2}

S = % {2[tx—iy(z+i)] lo + € [t+x*—y?+(z-+1)?] h + 2¢[xy—it(z+i)] /2}

S, = % {i[t2+x2+y2—(z+i)2] lo + 2e[itx—y(z+i)] h + 2e[ity+x(z+i)] I2}
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The corresponding stress-energy tensor

T = _ﬁ (5up‘5v/\nﬁ - %nwﬂl
also takes a nice compact form as (e = f%((¢’)2 +(1
8 fo

_ 2 € toc,@ ta3 .
(THV) B g2 (>\2+422)3 (t?:(x t33) with t3a
t33

K.Kumar (ITP-Hannover) Exact gauge fields

p’\n”) tr(FpJF)\T) (22)
7¢2)2))
— —77(,4[3()\2—0—422) + 16x(yx/522 ,
= tuz3 = —8x,z(A-32%), (23)
= 302 —4Z°(1 + 4)\ — 42°)
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The corresponding stress-energy tensor

Tw = —ﬁ (5NP5V’\77‘TT — %nwnp’\n”) tr(FpJF)\T) (22)
also takes a nice compact form as (e := —3 ((®')? + (1-9?)?))
_ 2,42 2
o tap = —Nap(A+427) 4+ 16x4x2° ,
_ 2 € toc,@ ta3 s _ _ a2
(Tow) = g2 (\244z2)3 (t?:(x t33> with Ba = taa = ~Bxaz(A-327), (23)

t33 = 302 —4Z3(1 + 4\ — 42%)

The fields E, B and T, are singular at the intersection of A=0 hyperbola HY2 and z=0-plane.

y 10

Vao “ w  Figure 4: Plots for the energy
o density p o< (/\2+422)_2|t:0.

. oo Left: Level sets for the values
10 (orange), 100 (cyan), and

1000 (brown). Right: Density

plot emphasizing the maxima.
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Abelian solution

For the Abelian case we judiciously chose h(1)) to obtain same fields on both sides of H'2,

A = —1 cos2(ip(x)+etho) e’ dx*  and

F

(24)

{sin2(¥(x)+ero) €%,€°, — cos2(v(x)+eth) e',€%, } dxt A dx” .
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For the Abelian case we judiciously chose h(1)) to obtain same fields on both sides of H'2,

—1 cos 2(1h(x)+erbo) eoH dx* and

h
Il

(24)

n
I

{sin2(¢(x)+ero) €%,€°, — cos2(p(x)+eth) €',€%, } dxH A dx” .

—2(ty +ix (z+i))
Et+iB= — 2 (tx — iy (z+1))

= = 4e2i%0

(A +2iz)3
(12 +x%+y? — (z+i)?)

PR T — (Bt e (D e
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For the Abelian case we judiciously chose h(1)) to obtain same fields on both sides of H'2,

A = —1 cos2(yp(x)+etho) e, dx*  and
~ (24)
F = {sin2(¢(x)+eto) e',€°, — cos2(v(x)+erho) €',€°, } dx* Adx"” .
E E 420 _22 (ty LR (Z+1))
= i . ,
6= ooy || (i)
(12 +x%+y? — (z+i)?) z,
On the right we show typical electric (red) and mag- b / *
netic (green) field lines for t=10 and =7 inside -1l -
the boundary sphere r=+/101. The fields diverge at S s
the (black) singular equatorial circle. X s /.
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K Kumar  (ITP-Hannover) e =



__ VangMilsAdss20/22 |
Conclusion

@ First, we employed the AdSs-slicing of AdS, and the group manifold structure of SU(1,1)
to find Yang—Mills solutions on Z x AdSs.

o Next, using the AdS; — R conformal map via AdSs- and S3-cylinders, we obtained
Minkowski solutions since the Yang—Mills theory is invariant in 4-dimensions.

@ These gauge fields are singular on a 2-dimensional hyperboloid x2+y2—t2 = 1, but this
singularity is milder than the one we started with i.e. X := r’—t>—1 = 0.

@ Due to this singularity the total energy diverges for both kinds of gauge fields.

@ Indeed, it is difficult to justify these solutions on physical grounds, but they could be relevant
in some supergravity or super Yang—Mills theories.

o Similar looking solutions were also found before using vortex equations and Dirac fields on
AdS, [RS18]; it would be interesting to see how these solutions are related.
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