Exact gauge fields from anti-de Sitter space (arXiv:2301.03606)

Kaushlendra Kumar
k-kumar.netlify.app
In collaboration with Olaf Lechtenfeld, Gabriel Picanço \& Savan Hirpara

Institute of Theoretical Physics, Leibniz University Hannover
Erwin Schrödinger Institute, University of Vienna
May 4, 2023

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
- The (non-)equivariant ansatz
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\rightleftarrows} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact case i.e. $\operatorname{SU}(1,1)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\rightleftarrows} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact case i.e. $\operatorname{SU}(1,1)$.
- For us the strategy would be: $\mathcal{I} \times \mathrm{AdS}_{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathcal{I} \times S_{+}^{3}$ followed by the previous $\mathcal{I} \times S^{3} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ and noting that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$.

Introduction

- In a 2017 paper [ILP17] SU(2) Yang-Mills solutions, found originally by Lüscher in 1977 [Lüs77], were rederived using conformal structures of dS_{4}.
- The strategy employed in [ILP17] was: $\mathcal{I} \times S^{3} \stackrel{\text { conformal }}{\rightleftharpoons} \mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ for $\mathcal{I}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ along with the fact that S^{3} is the group manifold of $\operatorname{SU}(2)$.
- Here we will a employ similar technique to obtain novel Yang-Mills solutions [Hir+23], albeit for the non-compact case i.e. $\operatorname{SU}(1,1)$.
- For us the strategy would be: $\mathcal{I} \times \mathrm{AdS}_{3} \stackrel{\text { conformal }}{\longleftrightarrow} \mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathcal{I} \times S_{+}^{3}$ followed by the previous $\mathcal{I} \times S^{3} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$ and noting that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$.
- In both cases, gluing of two copies of $\mathrm{dS}_{4} / \mathrm{AdS}_{4}$ is used to cover the full Minkowski space.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
- The (non-)equivariant ansatz
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$

It is well known that dS_{4}, seen an an embedding in $\mathbb{R}^{1,4}$ via

$$
\begin{equation*}
-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=R^{2} \tag{1}
\end{equation*}
$$

is conformal to both Minkowski space and an S^{3}-cylinder.

It is well known that $d S_{4}$, seen an an embedding in $\mathbb{R}^{1,4}$ via

$$
\begin{equation*}
-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=R^{2} \tag{1}
\end{equation*}
$$

is conformal to both Minkowski space and an S^{3}-cylinder. This is evident from its flat metric in appropriate (polar) coordinate patches with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \Omega_{3}^{2}\right) \tag{2}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+\mathrm{r}^{2} \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$.

It is well known that $d S_{4}$, seen an an embedding in $\mathbb{R}^{1,4}$ via

$$
\begin{equation*}
-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=R^{2} \tag{1}
\end{equation*}
$$

is conformal to both Minkowski space and an S^{3}-cylinder. This is evident from its flat metric in appropriate (polar) coordinate patches with common S^{2}-metric $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \Omega_{3}^{2}\right) \tag{2}\\
& =\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} r^{2}+\mathrm{r}^{2} \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
\end{align*}
$$

where $\tau \in \mathcal{I}:=(-\pi / 2, \pi / 2), \chi \in[0, \pi], t \in \mathbb{R}_{+} \& r \in \mathbb{R}_{+}$. Notice that this only covers future half of the Minkowski space! This is due to the following constraint:

$$
\begin{equation*}
\cos \tau>\cos \chi \quad \Longleftrightarrow \quad \chi>|\tau| \tag{3}
\end{equation*}
$$

- S^{2} coordinates $\theta \in[0, \pi] \& \phi \in[0,2 \pi]$ identified on both sides.
- S^{2} coordinates $\theta \in[0, \pi] \& \phi \in[0,2 \pi]$ identified on both sides.
- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$

$$
\begin{align*}
\frac{t}{R} & =\frac{\sin \tau}{\cos \tau-\cos \chi} \\
\frac{r}{R} & =\frac{\sin \chi}{\cos \tau-\cos \chi} \tag{4}
\end{align*}
$$

- S^{2} coordinates $\theta \in[0, \pi] \& \phi \in[0,2 \pi]$ identified on both sides.
- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$

$$
\begin{align*}
\frac{t}{R} & =\frac{\sin \tau}{\cos \tau-\cos \chi} \\
\frac{r}{R} & =\frac{\sin \chi}{\cos \tau-\cos \chi} \tag{4}
\end{align*}
$$

- To cover entire Minkowski space, we extend domain of τ to $\widetilde{\mathcal{I}}:=(-\pi, \pi)$.
- S^{2} coordinates $\theta \in[0, \pi] \& \phi \in[0,2 \pi]$ identified on both sides.
- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$

$$
\begin{align*}
\frac{t}{R} & =\frac{\sin \tau}{\cos \tau-\cos \chi} \\
\frac{r}{R} & =\frac{\sin \chi}{\cos \tau-\cos \chi} \tag{4}
\end{align*}
$$

- To cover entire Minkowski space, we extend domain of τ to $\widetilde{\mathcal{I}}:=(-\pi, \pi)$.
- This amounts to gluing two dS_{4} copies at $t=\tau=0$, half of which covers the full Minkowski space.
- S^{2} coordinates $\theta \in[0, \pi] \& \phi \in[0,2 \pi]$ identified on both sides.
- Effective map: $(t, r) \leftrightarrow(\tau, \chi)$

$$
\begin{align*}
\frac{t}{R} & =\frac{\sin \tau}{\cos \tau-\cos \chi} \\
\frac{r}{R} & =\frac{\sin \chi}{\cos \tau-\cos \chi} \tag{4}
\end{align*}
$$

- To cover entire Minkowski space, we extend domain of τ to $\widetilde{\mathcal{I}}:=(-\pi, \pi)$.
- This amounts to gluing two dS_{4} copies at $t=\tau=0$, half of which covers the full Minkowski space.
- This is clearly deomnstrated with the (τ, χ) Penrose diagram on the right with t - and r-slices.

$\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$

We can isometrically embed AdS_{4} inside $\mathbb{R}^{2,3}$ as

$$
\begin{equation*}
-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}+\left(x^{5}\right)^{2}=-R^{2} . \tag{5}
\end{equation*}
$$

We can isometrically embed AdS_{4} inside $\mathbb{R}^{2,3}$ as

$$
\begin{equation*}
-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}+\left(x^{5}\right)^{2}=-R^{2} . \tag{5}
\end{equation*}
$$

Here too this takes two useful conformal avatars, easily seen from its flat-metric:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right)=\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}+\mathrm{d} \Omega_{1,2}^{2}\right) \\
& =\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \Omega_{3+}^{2}\right) \tag{6}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2]$.

We can isometrically embed AdS_{4} inside $\mathbb{R}^{2,3}$ as

$$
\begin{equation*}
-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}+\left(x^{5}\right)^{2}=-R^{2} . \tag{5}
\end{equation*}
$$

Here too this takes two useful conformal avatars, easily seen from its flat-metric:

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}-\cosh ^{2} \rho \mathrm{~d} \tau^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \phi^{2}\right)=\frac{R^{2}}{\cos ^{2} \psi}\left(\mathrm{~d} \psi^{2}+\mathrm{d} \Omega_{1,2}^{2}\right) \\
& =\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \Omega_{2}^{2}\right)=\frac{R^{2}}{\cos ^{2} \chi}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \Omega_{3+}^{2}\right) \tag{6}
\end{align*}
$$

where $\psi \in \mathcal{I} \equiv(-\pi / 2, \pi / 2), \rho \in \mathbb{R}_{+}, \phi, \tau \in S^{1}$, but $\chi \in[0, \pi / 2]$. Thus, we get cylinders
(a) over (half of) the 3 -sphere S^{3}, and
(b) over $\mathrm{AdS}_{3} \cong \mathrm{SU}(1,1) /\{ \pm$ id $\}$ with metric $\mathrm{d} \Omega_{1,2}$.

Here the S_{+}^{3}-structure is, in fact, nothing but a conformal compactification of H^{3}. To see this, let us change coordinates $(\rho, \psi) \rightarrow(\lambda, \theta) \in \mathbb{R}_{+} \times[0, \pi]$ in (6) via

$$
\begin{gather*}
\tanh \rho=\sin \theta \tanh \lambda \quad \text { and } \quad \tan \psi=-\cos \theta \sinh \lambda \\
\Longrightarrow \quad \mathrm{ds}^{2}=R^{2}\left(-\cosh ^{2} \lambda \mathrm{~d} \tau^{2}+\mathrm{d} \lambda^{2}+\sinh ^{2} \lambda \mathrm{~d} \Omega_{2}^{2}\right) . \tag{7}
\end{gather*}
$$

Here the S_{+}^{3}-structure is, in fact, nothing but a conformal compactification of H^{3}. To see this, let us change coordinates $(\rho, \psi) \rightarrow(\lambda, \theta) \in \mathbb{R}_{+} \times[0, \pi]$ in (6) via

$$
\begin{align*}
& \tanh \rho=\sin \theta \tanh \lambda \quad \text { and } \quad \tan \psi=-\cos \theta \sinh \lambda \\
& \Longrightarrow \quad \mathrm{ds}^{2}=R^{2}\left(-\cosh ^{2} \lambda \mathrm{~d} \tau^{2}+\mathrm{d} \lambda^{2}+\sinh ^{2} \lambda \mathrm{~d} \Omega_{2}^{2}\right) . \tag{7}
\end{align*}
$$

Again, we need to glue two AdS_{4} copies-this time sideways though-to cover entire Minkowski space! This we achieve in two steps:

Here the S_{+}^{3}-structure is, in fact, nothing but a conformal compactification of H^{3}. To see this, let us change coordinates $(\rho, \psi) \rightarrow(\lambda, \theta) \in \mathbb{R}_{+} \times[0, \pi]$ in (6) via

$$
\begin{align*}
& \tanh \rho=\sin \theta \tanh \lambda \quad \text { and } \quad \tan \psi=-\cos \theta \sinh \lambda \\
& \Longrightarrow \quad \mathrm{ds}^{2}=R^{2}\left(-\cosh ^{2} \lambda \mathrm{~d} \tau^{2}+\mathrm{d} \lambda^{2}+\sinh ^{2} \lambda \mathrm{~d} \Omega_{2}^{2}\right) . \tag{7}
\end{align*}
$$

Again, we need to glue two AdS_{4} copies-this time sideways though-to cover entire Minkowski space! This we achieve in two steps:

- Joining two H^{3}-slices while keeping τ fixed. Equivalently, this means gluing two S^{3}-hemispheres, namely S_{+}^{3} and S_{-}^{3}, along the equatorial S^{2} :

$$
\begin{align*}
& \tanh \rho=\sin \theta \tanh \lambda=\varepsilon \sin \theta \sin \chi \& \tan \psi=-\varepsilon \cos \theta \sinh \lambda=-\varepsilon \cos \theta \tan \chi \\
& \text { where }\left\{\begin{array}{llll}
\varepsilon=+1: & \rho, \lambda \in \mathbb{R}_{+}, \chi \in\left[0, \frac{\pi}{2}\right) & \Leftrightarrow & \text { northern hemisphere } S_{+}^{3} \\
\varepsilon=-1: & \rho, \lambda \in \mathbb{R}_{-}, \quad \chi \in\left(\frac{\pi}{2}, \pi\right] & \Leftrightarrow & \text { southern hemisphere } S_{-}^{3}
\end{array}\right. \tag{8}
\end{align*}
$$

Here the S_{+}^{3}-structure is, in fact, nothing but a conformal compactification of H^{3}. To see this, let us change coordinates $(\rho, \psi) \rightarrow(\lambda, \theta) \in \mathbb{R}_{+} \times[0, \pi]$ in (6) via

$$
\begin{align*}
& \tanh \rho=\sin \theta \tanh \lambda \quad \text { and } \quad \tan \psi=-\cos \theta \sinh \lambda \\
& \Longrightarrow \quad \mathrm{ds}^{2}=R^{2}\left(-\cosh ^{2} \lambda \mathrm{~d} \tau^{2}+\mathrm{d} \lambda^{2}+\sinh ^{2} \lambda \mathrm{~d} \Omega_{2}^{2}\right) . \tag{7}
\end{align*}
$$

Again, we need to glue two AdS_{4} copies-this time sideways though-to cover entire Minkowski space! This we achieve in two steps:

- Joining two H^{3}-slices while keeping τ fixed. Equivalently, this means gluing two S^{3}-hemispheres, namely S_{+}^{3} and S_{-}^{3}, along the equatorial S^{2} :

$$
\begin{align*}
& \tanh \rho=\sin \theta \tanh \lambda=\varepsilon \sin \theta \sin \chi \& \tan \psi=-\varepsilon \cos \theta \sinh \lambda=-\varepsilon \cos \theta \tan \chi \\
& \text { where }\left\{\begin{array}{llll}
\varepsilon=+1: & \rho, \lambda \in \mathbb{R}_{+}, \chi \in\left[0, \frac{\pi}{2}\right) & \Leftrightarrow & \text { northern hemisphere } S_{+}^{3} \\
\varepsilon=-1: & \rho, \lambda \in \mathbb{R}_{-}, \quad \chi \in\left(\frac{\pi}{2}, \pi\right] & \Leftrightarrow & \text { southern hemisphere } S_{-}^{3}
\end{array}\right. \tag{8}
\end{align*}
$$

- Use the previous $(\tau, \chi) \rightarrow(t, r)$ map to get to the Minkowski space.

This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

$$
\begin{align*}
& \left\{\psi= \pm \frac{\pi}{2}\right\}=\{\lambda= \pm \infty\}=\left\{\chi=\frac{\pi}{2}\right\} \\
& \Longleftrightarrow \quad\left\{r^{2}-t^{2}=R^{2}\right\}=: H_{R}^{1,2} \cong \mathrm{dS}_{3} \cong \mathcal{I}_{\tau} \times\left. S^{2}\right|_{\mathrm{bdy}} . \tag{9}
\end{align*}
$$

This gluing, unlike in the de Sitter case, is not smooth and has singularity at the boundary:

$$
\begin{align*}
& \left\{\psi= \pm \frac{\pi}{2}\right\}=\{\lambda= \pm \infty\}=\left\{\chi=\frac{\pi}{2}\right\} \tag{9}\\
& \Longleftrightarrow \quad\left\{r^{2}-t^{2}=R^{2}\right\}=: H_{R}^{1,2} \cong \mathrm{dS}_{3} \cong \mathcal{I}_{\tau} \times\left. S^{2}\right|_{\mathrm{bdy}} .
\end{align*}
$$

One needs to be careful of the orientation of two two copies at the boundary as shown below

Figure 1: Gluing S_{3}^{+}(yellow shaded region) to S_{3}^{-}(orange shaded region) along the (dashed) boundary.

ESI-talk

Figure 2: Gluing of two AdS_{4} to reveal the full Minkowski space with the lightcone (red). Left: (τ, χ) AdS_{4} space (two copies) yielding the Penrose diagram with constant t - (blue) and r-slices (brown). Right: (t, r) Minkowski space with boundary hyperbola $H_{R}^{1,2}$ (dashed) and constant τ - (blue) and χ-slices (brown).

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
- The (non-)equivariant ansatz
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

$\operatorname{SU}(1,1)$ Lie algebra and one-forms

We start by noticing that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$:

$$
g: \operatorname{AdS}_{3} \rightarrow \mathrm{SU}(1,1) \quad \text { via } \quad\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{10}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) .
$$

We start by noticing that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$:

$$
g: \operatorname{AdS}_{3} \rightarrow \operatorname{SU}(1,1) \quad \text { via } \quad\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{10}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) .
$$

This map also yields the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad I_{0}=\left(\begin{array}{cc}
-\mathrm{i} & 0 \tag{11}\\
0 & \mathrm{i}
\end{array}\right), I_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), I_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right),
$$

where the $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} of $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{SU}(1,1) /\{ \pm \mathrm{id}\}$ are subject to

$$
\begin{equation*}
\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \quad \text { with } \quad\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1), \tag{12}
\end{equation*}
$$

We start by noticing that AdS_{3} is the group manifold of $\operatorname{SU}(1,1)$:

$$
g: \operatorname{AdS}_{3} \rightarrow \operatorname{SU}(1,1) \quad \text { via } \quad\left(y^{1}, y^{2}, y^{3}, y^{4}\right) \mapsto\left(\begin{array}{ll}
y^{1}-\mathrm{i} y^{2} & y^{3}-\mathrm{i} y^{4} \tag{10}\\
y^{3}+\mathrm{i} y^{4} & y^{1}+\mathrm{i} y^{2}
\end{array}\right) .
$$

This map also yields the left-invariant one-forms $e^{\alpha}, \alpha=0,1,2$ via Maurer-Cartan method:

$$
\Omega_{L}(g)=g^{-1} \mathrm{~d} g=e^{\alpha} I_{\alpha} ; \quad I_{0}=\left(\begin{array}{cc}
-\mathrm{i} & 0 \tag{11}\\
0 & \mathrm{i}
\end{array}\right), I_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), I_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

where the $\mathfrak{s l}(2, \mathbb{R})$ generators I_{α} of $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{SU}(1,1) /\{ \pm \mathrm{id}\}$ are subject to

$$
\begin{equation*}
\left[I_{\alpha}, I_{\beta}\right]=2 f_{\alpha \beta}^{\gamma} I_{\gamma} \quad \text { and } \quad \operatorname{tr}\left(I_{\alpha} I_{\beta}\right)=2 \eta_{\alpha \beta} \quad \text { with } \quad\left(\eta_{\alpha \beta}\right)=\operatorname{diag}(-1,1,1) \tag{12}
\end{equation*}
$$

and $f_{01}^{2}=f_{20}^{1}=-f_{12}^{0}=1$. Explicitly, we get the following one-forms on AdS_{3}

$$
\begin{align*}
e^{0} & =\cosh ^{2} \rho \mathrm{~d} \tau+\sinh ^{2} \rho \mathrm{~d} \phi \\
e^{1} & =\cos (\tau-\phi) \mathrm{d} \rho+\sinh \rho \cosh \rho \sin (\tau-\phi) \mathrm{d}(\tau+\phi) \tag{13}\\
e^{2} & =-\sin (\tau-\phi) \mathrm{d} \rho+\sinh \rho \cosh \rho \cos (\tau-\phi) \mathrm{d}(\tau+\phi)
\end{align*}
$$

The (non-)equivariant ansatz

These one-forms e^{α} satisfy following Cartan structure equation

$$
\begin{equation*}
\mathrm{de} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \tag{14}
\end{equation*}
$$

and provide a local orthonormal frame on the cylinder $\mathcal{I} \times \mathrm{AdS}_{3}$:

$$
\begin{equation*}
\mathrm{d} s_{\mathrm{cy1}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta}=:\left(e^{\psi}\right)^{2}-\left(e^{0}\right)^{2}+\left(e^{1}\right)^{2}+\left(e^{2}\right)^{2} . \tag{15}
\end{equation*}
$$

These one-forms e^{α} satisfy following Cartan structure equation

$$
\begin{equation*}
\mathrm{d} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \tag{14}
\end{equation*}
$$

and provide a local orthonormal frame on the cylinder $\mathcal{I} \times \mathrm{AdS}_{3}$:

$$
\begin{equation*}
\mathrm{d} s_{\mathrm{cy1}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta}=:\left(e^{\psi}\right)^{2}-\left(e^{0}\right)^{2}+\left(e^{1}\right)^{2}+\left(e^{2}\right)^{2} . \tag{15}
\end{equation*}
$$

A generic gauge field in this frame is given by

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}_{\psi} e^{\psi}+\mathcal{A}_{\alpha} e^{\alpha} \tag{16}
\end{equation*}
$$

which can be made $\operatorname{SU}(1,1)$-symmetric by setting $\mathcal{A}_{\psi}=0$, so that $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ becomes

$$
\begin{equation*}
\mathcal{A}=X_{\alpha}(\psi) e^{\alpha} \quad \Longrightarrow \quad \mathcal{F}=X_{\alpha}^{\prime} e^{\psi} \wedge e^{\alpha}+\frac{1}{2}\left(-2 f_{\beta \gamma}^{\alpha} X_{\alpha}+\left[X_{\beta}, X_{\gamma}\right]\right) e^{\beta} \wedge e^{\gamma} \tag{17}
\end{equation*}
$$

These one-forms e^{α} satisfy following Cartan structure equation

$$
\begin{equation*}
\mathrm{d} e^{\alpha}+f_{\beta \gamma}^{\alpha} e^{\beta} \wedge e^{\gamma}=0 \tag{14}
\end{equation*}
$$

and provide a local orthonormal frame on the cylinder $\mathcal{I} \times \mathrm{AdS}_{3}$:

$$
\begin{equation*}
\mathrm{d} s_{\mathrm{cy1}}^{2}=\mathrm{d} \psi^{2}+\eta_{\alpha \beta} e^{\alpha} e^{\beta}=:\left(e^{\psi}\right)^{2}-\left(e^{0}\right)^{2}+\left(e^{1}\right)^{2}+\left(e^{2}\right)^{2} . \tag{15}
\end{equation*}
$$

A generic gauge field in this frame is given by

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}_{\psi} e^{\psi}+\mathcal{A}_{\alpha} e^{\alpha} \tag{16}
\end{equation*}
$$

which can be made $\operatorname{SU}(1,1)$-symmetric by setting $\mathcal{A}_{\psi}=0$, so that $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ becomes

$$
\begin{equation*}
\mathcal{A}=X_{\alpha}(\psi) e^{\alpha} \quad \Longrightarrow \quad \mathcal{F}=X_{\alpha}^{\prime} e^{\psi} \wedge e^{\alpha}+\frac{1}{2}\left(-2 f_{\beta \gamma}^{\alpha} X_{\alpha}+\left[X_{\beta}, X_{\gamma}\right]\right) e^{\beta} \wedge e^{\gamma} \tag{17}
\end{equation*}
$$

Moreover, to satisfy the Gauss-law constraint $\left[X_{\alpha}, X_{\alpha}^{\prime}\right]=0($ from eom: $* \mathrm{~d} * \mathcal{F}=0$) we chose

$$
\begin{equation*}
X_{0}=\Theta_{0}(\psi) I_{0}, \quad X_{1}=\Theta_{1}(\psi) I_{1}, \quad X_{2}=\Theta_{2}(\psi) I_{2} \tag{18}
\end{equation*}
$$

This gives us the following Yang-Mills Langrangian

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2}\left\{\left(\Theta_{1}^{\prime}\right)^{2}+\left(\Theta_{2}^{\prime}\right)^{2}+\left(\Theta_{0}^{\prime}\right)^{2}\right\}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\}, \tag{19}
\end{align*}
$$

which enjoys a discrete symmetry of the permutation group S_{4}, which acts by permuting three fields and flipping the sign of any two fields.

This gives us the following Yang-Mills Langrangian

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2}\left\{\left(\Theta_{1}^{\prime}\right)^{2}+\left(\Theta_{2}^{\prime}\right)^{2}+\left(\Theta_{0}^{\prime}\right)^{2}\right\}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\}, \tag{19}
\end{align*}
$$

which enjoys a discrete symmetry of the permutation group S_{4}, which acts by permuting three fields and flipping the sign of any two fields. Two maximal normal subgroups of S_{4}, namely S_{3} (non-Abelian) and D_{8} (Abelian), yields interesting solutions as follows.

This gives us the following Yang-Mills Langrangian

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2}\left\{\left(\Theta_{1}^{\prime}\right)^{2}+\left(\Theta_{2}^{\prime}\right)^{2}+\left(\Theta_{0}^{\prime}\right)^{2}\right\}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} \tag{19}
\end{align*}
$$

which enjoys a discrete symmetry of the permutation group S_{4}, which acts by permuting three fields and flipping the sign of any two fields. Two maximal normal subgroups of S_{4}, namely S_{3} (non-Abelian) and D_{8} (Abelian), yields interesting solutions as follows.

- Non-equivariant Abelian ansatz:

$$
\begin{aligned}
\Theta_{0} & =\mathrm{h}(\psi) \quad \text { while } \quad \Theta_{1}=\Theta_{2}=0 \\
& \Longrightarrow \mathrm{~h}^{\prime \prime}=-4 \mathrm{~h}
\end{aligned}
$$

This gives us the following Yang-Mills Langrangian

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \operatorname{tr} \mathcal{F}_{\psi \alpha} \mathcal{F}^{\psi \alpha}+\frac{1}{8} \operatorname{tr} \mathcal{F}_{\beta \gamma} \mathcal{F}^{\beta \gamma} \\
& =\frac{1}{2}\left\{\left(\Theta_{1}^{\prime}\right)^{2}+\left(\Theta_{2}^{\prime}\right)^{2}+\left(\Theta_{0}^{\prime}\right)^{2}\right\}-2\left\{\left(\Theta_{1}-\Theta_{2} \Theta_{0}\right)^{2}+\left(\Theta_{2}-\Theta_{0} \Theta_{1}\right)^{2}+\left(\Theta_{0}-\Theta_{1} \Theta_{2}\right)^{2}\right\} \tag{19}
\end{align*}
$$

which enjoys a discrete symmetry of the permutation group S_{4}, which acts by permuting three fields and flipping the sign of any two fields. Two maximal normal subgroups of S_{4}, namely S_{3} (non-Abelian) and D_{8} (Abelian), yields interesting solutions as follows.

- Non-equivariant Abelian ansatz:

$$
\begin{aligned}
\Theta_{0} & =\mathrm{h}(\psi) \quad \text { while } \quad \Theta_{1}=\Theta_{2}=0 \\
& \Longrightarrow \mathrm{~h}^{\prime \prime}=-4 \mathrm{~h}
\end{aligned}
$$

- Equivariant non-Ablian ansatz:

$$
\begin{aligned}
& \Theta_{0}=\Theta_{1}=\Theta_{2}=: \frac{1}{2}(1+\Phi(\psi)) \\
& \Longrightarrow \Phi^{\prime \prime}=2 \Phi\left(1-\Phi^{2}\right)=-\frac{\partial V}{\partial \Phi}
\end{aligned}
$$

Figure 3: Potential $V(\Phi)=\frac{1}{2}\left(\Phi^{2}-1\right)^{2}$.

Table of Contents

(1) Introduction
(3) Geometrical setting

- Recap: $\mathrm{dS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
- The (non-)equivariant ansatz

4 Exact gauge fields

- Non-Abelian solution
- Abelian solution
(5) Conclusion

Non-Abelian solution

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2} 4 \mathrm{z}^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right), \tag{20}\\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1 .
\end{align*}
$$

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2}+4 z^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right) \\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1 . \tag{20}
\end{align*}
$$

Fields are obtained from the field strength F of $\mathcal{A} \equiv A=\frac{1}{2}(1+\Phi(\psi(x))) I_{\alpha} e^{\alpha}{ }_{\mu} \mathrm{d} x^{\mu}$,

$$
\begin{equation*}
F=\frac{1}{2}\left(\Phi^{\prime}(\psi(x)) I_{\alpha} e_{\mu}^{\psi} e_{\nu}^{\alpha}-\frac{1}{2}\left(1-\Phi(\psi(x))^{2}\right) I_{\alpha} f_{\beta \gamma}^{\alpha} e_{\mu}^{\beta} e_{\nu}^{\gamma}\right) \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}: \tag{21}
\end{equation*}
$$

Using $(\tau, \rho, \psi) \rightarrow(\tau, \chi, \theta) \rightarrow(t, r, \theta)$ for $R=1$ along with abbreviations $x \cdot \mathrm{~d} x:=x_{\mu} \mathrm{d} x^{\mu}$, $\varepsilon^{1}=\varepsilon^{2}:=\varepsilon$ and $\varepsilon^{0}:=1$ we can write the Minkowski one-forms in a compact form as,

$$
\begin{align*}
& e^{\alpha}=\frac{\varepsilon^{\alpha}}{\lambda^{2}+4 z^{2}}\left(2(\lambda+2) \mathrm{d} x^{\alpha}-4 x^{\alpha} x \cdot \mathrm{~d} x-4 f_{\beta \gamma}^{\alpha} x^{\beta} \mathrm{d} x^{\gamma}\right), \tag{20}\\
& e^{\psi}=\frac{\varepsilon}{\lambda^{2}+4 z^{2}}(-2 \lambda \mathrm{~d} z+4 z x \cdot \mathrm{~d} x), \quad \text { where } \lambda:=r^{2}-t^{2}-1 .
\end{align*}
$$

Fields are obtained from the field strength F of $\mathcal{A} \equiv A=\frac{1}{2}(1+\Phi(\psi(x))) I_{\alpha} e^{\alpha}{ }_{\mu} \mathrm{d} x^{\mu}$,

$$
\begin{equation*}
F=\frac{1}{2}\left(\Phi^{\prime}(\psi(x)) I_{\alpha} e_{\mu}^{\psi} e_{\nu}^{\alpha}-\frac{1}{2}\left(1-\Phi(\psi(x))^{2}\right) I_{\alpha} f_{\beta \gamma}^{\alpha} e^{\beta}{ }_{\mu} e^{\gamma}{ }_{\nu}\right) \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}: \tag{21}
\end{equation*}
$$

Color EM fields in terms of Riemann-Silberstein vector $\vec{S}:=\vec{E}+\mathrm{i} \vec{B}$:

$$
\begin{aligned}
& S_{x}=-\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{i} z)(\lambda+2 \mathrm{iz})^{2}}\left\{2[t y+\mathrm{i} x(z+\mathrm{i})] I_{0}+2 \varepsilon[x y+\mathrm{i} t(z+\mathrm{i})] I_{1}+\varepsilon\left[t^{2}-x^{2}+y^{2}+(z+\mathrm{i})^{2}\right] I_{2}\right\} \\
& S_{y}=\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{iz})(\lambda+2 \mathrm{iz})^{2}}\left\{2[t x-\mathrm{i} y(z+\mathrm{i})] I_{0}+\varepsilon\left[t^{2}+x^{2}-y^{2}+(z+\mathrm{i})^{2}\right] I_{1}+2 \varepsilon[x y-\mathrm{i} t(z+\mathrm{i})] I_{2}\right\} \\
& S_{z}=\frac{2\left(\mathrm{i} \varepsilon \Phi^{\prime}+\Phi^{2}-1\right)}{(\lambda-2 \mathrm{iz})(\lambda+2 \mathrm{iz})^{2}}\left\{\mathrm{i}\left[t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right] I_{0}+2 \varepsilon[\mathrm{i} t x-y(z+\mathrm{i})] I_{1}+2 \varepsilon[\mathrm{i} t y+x(z+\mathrm{i})] I_{2}\right\}
\end{aligned}
$$

The corresponding stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{2 g^{2}}\left(\delta_{\mu}{ }^{\rho} \delta_{\nu}{ }^{\lambda} \eta^{\sigma \tau}-\frac{1}{4} \eta_{\mu \nu} \eta^{\rho \lambda} \eta^{\sigma \tau}\right) \operatorname{tr}\left(F_{\rho \sigma} F_{\lambda \tau}\right) \tag{22}
\end{equation*}
$$

also takes a nice compact form as $\left(\epsilon:=-\frac{1}{4}\left(\left(\Phi^{\prime}\right)^{2}+\left(1-\Phi^{2}\right)^{2}\right)\right)$

$$
\left(T_{\mu \nu}\right)=\frac{8}{g^{2}} \frac{\epsilon}{\left(\lambda^{2}+4 z^{2}\right)^{3}}\left(\begin{array}{ll}
\mathfrak{t}_{\alpha \beta} & \mathfrak{t}_{\alpha 3} \tag{23}\\
\mathfrak{t}_{3 \alpha} & \mathfrak{t}_{33}
\end{array}\right) \quad \text { with } \quad\left\{\begin{aligned}
& \mathfrak{t}_{\alpha \beta}=-\eta_{\alpha \beta}\left(\lambda^{2}+4 z^{2}\right)+16 x_{\alpha} x_{\beta} z^{2} \\
& \mathfrak{t}_{3 \alpha}=\mathfrak{t}_{\alpha 3}=-8 x_{\alpha} z\left(\lambda-3 z^{2}\right) \\
& \mathfrak{t}_{33}=3 \lambda^{2}-4 z^{2}\left(1+4 \lambda-4 z^{2}\right)
\end{aligned}\right.
$$

The corresponding stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{2 g^{2}}\left(\delta_{\mu}{ }^{\rho} \delta_{\nu}{ }^{\lambda} \eta^{\sigma \tau}-\frac{1}{4} \eta_{\mu \nu} \eta^{\rho \lambda} \eta^{\sigma \tau}\right) \operatorname{tr}\left(F_{\rho \sigma} F_{\lambda \tau}\right) \tag{22}
\end{equation*}
$$

also takes a nice compact form as $\left(\epsilon:=-\frac{1}{4}\left(\left(\Phi^{\prime}\right)^{2}+\left(1-\Phi^{2}\right)^{2}\right)\right)$

$$
\left(T_{\mu \nu}\right)=\frac{8}{g^{2}} \frac{\epsilon}{\left(\lambda^{2}+4 z^{2}\right)^{3}}\left(\begin{array}{ll}
\mathfrak{t}_{\alpha \beta} & \mathfrak{t}_{\alpha 3} \tag{23}\\
\mathfrak{t}_{3 \alpha} & \mathfrak{t}_{33}
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{l}
\mathfrak{t}_{\alpha \beta}=-\eta_{\alpha \beta}\left(\lambda^{2}+4 z^{2}\right)+16 x_{\alpha} x_{\beta} z^{2} \\
\mathfrak{t}_{3 \alpha}=\mathfrak{t}_{\alpha 3}=-8 x_{\alpha} z\left(\lambda-3 z^{2}\right) \\
\mathfrak{t}_{33}=3 \lambda^{2}-4 z^{2}\left(1+4 \lambda-4 z^{2}\right)
\end{array}\right.
$$

The fields \vec{E}, \vec{B} and $T_{\mu \nu}$ are singular at the intersection of $\lambda=0$ hyperbola $H^{1,2}$ and $z=0$-plane.

Figure 4: Plots for the energy density $\left.\rho \propto\left(\lambda^{2}+4 z^{2}\right)^{-2}\right|_{t=0}$. Left: Level sets for the values 10 (orange), 100 (cyan), and 1000 (brown). Right: Density plot emphasizing the maxima.

Abelian solution

For the Abelian case we judiciously chose $h(\psi)$ to obtain same fields on both sides of $H^{1,2}$,

$$
\begin{align*}
& \widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu} \quad \text { and } \tag{24}\\
& \widetilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{\psi}{ }_{\mu} e^{0}{ }_{\nu}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{1}{ }_{\mu} e^{2}{ }_{\nu}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} .
\end{align*}
$$

For the Abelian case we judiciously chose $h(\psi)$ to obtain same fields on both sides of $H^{1,2}$,

$$
\begin{align*}
& \tilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{0} \mathrm{~d} x^{\mu} \quad \text { and } \\
& \widetilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{\psi} e_{\nu}^{0}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e_{\mu}^{1} e_{\nu}^{2}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} \tag{24}
\end{align*}
$$

RS-vector reminiscent of the Hopf-Ranãda knot

$$
\overrightarrow{\widetilde{E}}+\mathrm{i} \vec{B}=\frac{4 \mathrm{e}^{2 \mathrm{i} \psi_{0}}}{(\lambda+2 \mathrm{i} z)^{3}}\left(\begin{array}{c}
-2(t y+\mathrm{i} x(z+\mathrm{i})) \\
2(t x-\mathrm{i} y(z+\mathrm{i})) \\
\mathrm{i}\left(t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right)
\end{array}\right)
$$

For the Abelian case we judiciously chose $h(\psi)$ to obtain same fields on both sides of $H^{1,2}$,

$$
\begin{align*}
& \widetilde{A}=-\frac{1}{2} \cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{0}{ }_{\mu} \mathrm{d} x^{\mu} \quad \text { and } \tag{24}\\
& \widetilde{F}=\left\{\sin 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{\psi}{ }_{\mu} e^{0}{ }_{\nu}-\cos 2\left(\psi(x)+\varepsilon \psi_{0}\right) e^{1}{ }_{\mu} e^{2}{ }_{\nu}\right\} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} .
\end{align*}
$$

RS-vector reminiscent of the Hopf-Ranãda knot

$$
\vec{E}+\mathrm{i} \vec{B}=\frac{4 \mathrm{e}^{2 \mathrm{i} \psi_{0}}}{(\lambda+2 \mathrm{i} z)^{3}}\left(\begin{array}{c}
-2(t y+\mathrm{i} x(z+\mathrm{i})) \\
2(t x-\mathrm{i} y(z+\mathrm{i})) \\
\mathrm{i}\left(t^{2}+x^{2}+y^{2}-(z+\mathrm{i})^{2}\right)
\end{array}\right)
$$

On the right we show typical electric (red) and magnetic (green) field lines for $t=10$ and $\psi_{0}=\frac{\pi}{2}$ inside the boundary sphere $r=\sqrt{101}$. The fields diverge at the (black) singular equatorial circle.

Table of Contents

(1) Introduction
(2) Geometrical setting

- Recap: $d S_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
- $\mathrm{AdS}_{4} \xrightarrow{\text { conformal }} \mathbb{R}^{1,3}$
(3) Yang-Mills on AdS_{4}
- $\operatorname{SU}(1,1)$ Lie algebra and one-forms
- The (non-)equivariant ansatz
(4) Exact gauge fields
- Non-Abelian solution
- Abelian solution
(5) Conclusion

Conclusion

- First, we employed the $A d S_{3}$-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, using the $\mathrm{AdS}_{4} \rightarrow \mathbb{R}^{1,3}$ conformal map via $\mathrm{AdS}_{3^{-}}$and S^{3}-cylinders, we obtained Minkowski solutions since the Yang-Mills theory is invariant in 4-dimensions.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, using the $\mathrm{AdS}_{4} \rightarrow \mathbb{R}^{1,3}$ conformal map via $\mathrm{AdS}_{3^{-}}$and S^{3}-cylinders, we obtained Minkowski solutions since the Yang-Mills theory is invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with i.e. $\lambda:=r^{2}-t^{2}-1=0$.

Conclusion

- First, we employed the AdS_{3}-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, using the $\mathrm{AdS}_{4} \rightarrow \mathbb{R}^{1,3}$ conformal map via $\mathrm{AdS}_{3^{-}}$and S^{3}-cylinders, we obtained Minkowski solutions since the Yang-Mills theory is invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with i.e. $\lambda:=r^{2}-t^{2}-1=0$.
- Due to this singularity the total energy diverges for both kinds of gauge fields.

Conclusion

- First, we employed the $A d S_{3}$-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, using the $\mathrm{AdS}_{4} \rightarrow \mathbb{R}^{1,3}$ conformal map via $\mathrm{AdS}_{3^{-}}$and S^{3}-cylinders, we obtained Minkowski solutions since the Yang-Mills theory is invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with i.e. $\lambda:=r^{2}-t^{2}-1=0$.
- Due to this singularity the total energy diverges for both kinds of gauge fields.
- Indeed, it is difficult to justify these solutions on physical grounds, but they could be relevant in some supergravity or super Yang-Mills theories.

Conclusion

- First, we employed the $A d S_{3}$-slicing of AdS_{4} and the group manifold structure of $\operatorname{SU}(1,1)$ to find Yang-Mills solutions on $\mathcal{I} \times \mathrm{AdS}_{3}$.
- Next, using the $\mathrm{AdS}_{4} \rightarrow \mathbb{R}^{1,3}$ conformal map via AdS_{3} - and S^{3}-cylinders, we obtained Minkowski solutions since the Yang-Mills theory is invariant in 4-dimensions.
- These gauge fields are singular on a 2 -dimensional hyperboloid $x^{2}+y^{2}-t^{2}=1$, but this singularity is milder than the one we started with i.e. $\lambda:=r^{2}-t^{2}-1=0$.
- Due to this singularity the total energy diverges for both kinds of gauge fields.
- Indeed, it is difficult to justify these solutions on physical grounds, but they could be relevant in some supergravity or super Yang-Mills theories.
- Similar looking solutions were also found before using vortex equations and Dirac fields on $\mathrm{AdS}_{4}[\mathrm{RS} 18]$; it would be interesting to see how these solutions are related.

References I

[Hir+23] Savan Hirpara et al. "Exact gauge fields from anti-de Sitter space". In: (Jan. 2023). arXiv: 2301.03606 [hep-th].
[ILP17] Tatiana A. Ivanova, Olaf Lechtenfeld, and Alexander D. Popov. "Solutions to Yang-Mills equations on four-dimensional de Sitter space". In: Phys. Rev. Lett. 119.6 (2017), p. 061601. Dor: 10.1103/PhysRevLett.119.061601. arXiv: 1704.07456 [hep-th].
[Lüs77] M. Lüscher. "SO(4) Symmetric Solutions of Minkowskian Yang-Mills Field Equations". In: Phys. Lett. B 70 (1977), pp. 321-324. Doi: 10.1016/0370-2693(77) 90668-2.
[RS18] Calum Ross and Bernd J. Schroers. "Hyperbolic vortices and Dirac fields in $2+1$ dimensions". In: J. Phys. A 51.29 (2018), p. 295202. Doi: 10.1088/1751-8121/aac597. arXiv: 1803.11120 [hep-th].

THANK YOU!

Questions?

